Crops ›› 2023, Vol. 39 ›› Issue (1): 52-57.doi: 10.16035/j.issn.1001-7283.2023.01.008

Previous Articles     Next Articles

Effects of Debranched and Repeated Wet Heat Treatment on Content and Physicochemical Properties of Resistant Starch of Tartary Buckwheat

Fu Ziping1,2(), Fan Yu1, Lai Dili2,3, Zhang Kaixuan2, Zhu Jianfeng4, Li Jiguang5, Zhou Meiliang2(), Wang Junzhen4()   

  1. 1College of Food and Bioengineering, Chengdu University, Chengdu 610000, Sichuan, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Agriculture, Guizhou University, Guiyang 550000, Guizhou, China
    4Agricultural Science Research Institute of Liangshan Yi Autonomous Prefecture, Liangshan 615000, Sichuan, China
    5Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410000, Hunan, China
  • Received:2022-06-21 Revised:2022-09-16 Online:2023-02-15 Published:2023-02-22

Abstract:

Starch branch chains of Fagopyrum tataricum were removed by pullulanase (PUL), and the effects of PUL dosage and times of wet and heat treatment (HMT) on resistant starch content and physicochemical properties of F.tataricum whole powder were investigated. The results showed that the content of resistant starch of F.tataricum could be increased by PUL, HMT and PUL-HMT, in which the dosage of PUL was 10U/g (PUL10), and the two times treatment (HMT2) had the best effects, the resistant starch content increased from 4.74% to 13.38%. After PUL-HMT, the surface of F.tataricum powder changed from smooth to concave and convex, the crystal structure changed from A type to A+V type, and the relative crystallinity and enthalpy value decreased. Infrared spectroscopy showed that the short-range ordered structure in starch changed slightly. The chemical properties and resistant starch content of F.tataricum powder could be effectively changed by debranching and HMT, and PUL10-HMT2 treatment could get more ideal F.tataricum material with high resistant starch.

Key words: Fagopyrum tataricum, Pullulanase, Wet heat treatment, Resistant starch, Physicochemical properties

Table 1

Resistant starch content of different treatments"

样品
Sample
普鲁兰酶用量
Pullulanase
dosage (U/g)
湿热处理次数
Times of wet
heat treatment
抗性淀粉含量
Resistant starch
content (%)
PUL0-HMT0 0 0 4.74±0.12f
PUL10-HMT0 10 0 11.58±0.27b
PUL20-HMT0 20 0 10.96±0.08c
PUL0-HMT1 0 1 6.48±0.06e
PUL10-HMT1 10 1 12.82±0.12a
PUL20-HMT1 20 1 12.70±0.27a
PUL0-HMT2 0 2 9.34±0.02d
PUL10-HMT2 10 2 13.38±0.35a
PUL20-HMT2 20 2 13.20±0.26a

Fig.1

Electronic scan of natural samples"

Fig.2

Electronic scan of PUL10-HMT2 samples"

Fig.3

X-ray diffraction of samples under different treatment conditions"

Fig.4

FTIR spectra after different treatment conditions"

Table 2

Ratio of peak strength under different treatment conditions"

样品Sample 1047/1022cm-1 1022/995cm-1
天然样品Natural sample (CK) 1.04±0.26a 0.97±0.26a
PUL10-HMT2 1.01±0.08a 0.99±0.16a

Table 3

Thermodynamic parameters after different treatment conditions"

参数Parameter 天然样品Natural sample PUL10-HMT2
T0 (℃) 75.73±0.08b 80.43±0.54a
Tp (℃) 79.83±0.34b 83.76±0.28a
Tc (℃) 83.50±0.32b 85.67±0.07a
?H (J/g) 5.09±0.14a 1.58±0.21a
?T (℃) 7.77±0.38a 5.24±0.59a
[1] 王强, 向达兵, 魏威, 等. 赤霉素对苦荞生长、结实和产量的影响. 南方农业学报, 2022, 53(2):441-450.
[2] 张恩华, 王亚, 聂子涵, 等. 苦荞芽苗菜黄酮超声提取工艺. 北京农学院学报, 2022, 37(2):104-108.
[3] Zhong L Y, Lin Y J, Wang C, et al. Chemical profile, antimicrobial and antioxidant activity assessment of the crude extract and its main flavonoids from tartary buckwheat sprouts. Molecules, 2022, 27(2):374.
doi: 10.3390/molecules27020374
[4] 白浩. 强化抗性淀粉低蛋白主食对早期2型糖尿病肾病防治效果的研究. 泰安:山东大学, 2018.
[5] Adrianna B, Sylwia S, Amin M K, et al. Health benefits of resistant starch:A review of the literature. Journal of Functional Foods, 2022, 93:105094.
doi: 10.1016/j.jff.2022.105094
[6] 费洪立, 李志江, 阮长青, 等. 抗性淀粉的生理功能及其在食品中的应用. 食品工业科技, 2022, 43(18):425-432.
[7] 张雅琦, 阮长青, 张东杰, 等. 抗性淀粉的分析方法研究进展. 中国粮油学报, 2022, 11(2):1-13
[8] Leeman A M, Karlsson M E, Eliasson A C, et al. Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio. Carbohydrate Polymers, 2006, 65(3):306-313.
doi: 10.1016/j.carbpol.2006.01.019
[9] Wang R, Li M, Padraig S, et al. Preparation, structural characteristics and physiological property of resistant starch. Advances in Food and Nutrition Research, 2021, 95(9):40-41.
[10] 张婧婷. 抗性淀粉的类型及其制备技术研究进展. 现代面粉工业, 2021, 35(6):26-33.
[11] Li M N, Zhang B, Xie Y, et al. Effects of debranching and repeated heat-moisture treatments on structure, physicochemical properties and in vitro digestibility of wheat starch. Food Chemistry, 2019, 294(5):440-447.
doi: 10.1016/j.foodchem.2019.05.040
[12] Trinh T M D, Nguyen T M H, Nguyen T L P, et al. Physicochemical properties and in vitro digestibility of mung-bean starches varying amylose contents under citric acid and hydrothermal treatments. International Journal of Biological Macromolecules, 2020, 164(7):651-658.
doi: 10.1016/j.ijbiomac.2020.07.187
[13] 亢灵涛, 宋莹, 刘思含, 等. 压热法制备甘薯抗性淀粉的工艺优化. 食品工业科技, 2019, 40(1):162-167,180.
[14] Goni I, García-Dizl L. Analysis of resistant starch: a method for foods and food products. Food Chemistry, 1996, 56(4):445-449.
doi: 10.1016/0308-8146(95)00222-7
[15] Sun H R, Fan J Y, Tian Z G, et al. Effects of treatment methods on the formation of resistant starch in purple sweet potato. Food Chemistry, 2021, 367:130580.
doi: 10.1016/j.foodchem.2021.130580
[16] 赵凯, 陈威, 宫玉晶, 等. 酶脱支处理对颗粒态缓慢消化淀粉形成的影响. 食品科学技术学报, 2019, 37(2):42-47.
[17] 甘增鹏, 谭金萍, 任剑豪, 等. 含水量对湿热处理荸荠淀粉性质的影响. 中国粮油学报, 2019, 34(12):13-18,26.
[18] Gong B, Xu M J, Li B, et al. Repeated heat-moisture treatment exhibits superiorities in modification of structural, physicochemical and digestibility properties of red adzuki bean starch compared to continuous heat-moisture way. Food Research International, 2017, 102(9):776-784.
doi: 10.1016/j.foodres.2017.09.078
[19] Martins F L, Halal S L M E, Dias A R G, et al. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydrate Polymers, 2021, 274:118665.
doi: 10.1016/j.carbpol.2021.118665
[20] 王东旭, 郭美玲, 李占明, 等. 湿热及酶解处理对糯米粉体外消化特性和血糖生成指数的影响. 食品安全质量检测学报, 2022, 13(7):2252-2257.
[21] 李蒙娜. 小麦抗性淀粉的制备及结构性质研究. 合肥:合肥工业大学, 2019.
[22] 李红梅, 陈文文, 黄璐, 等. 复合湿热处理对苦荞全粉理化特性及体外消化性的影响. 食品科学技术学报, 2021, 39(5):39-48.
[23] Huang T T, Zhou D N, Jin Z Y, et al. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 2016, 54(10):202-210.
doi: 10.1016/j.foodhyd.2015.10.002
[24] Jacinto A R L, Carlos S N, João V F F, et al. Effect of heat- moisture treatment on the thermal,structural and morphological properties of quinoa starch. Carbohydrate Polymer Technologies and Applications, 2022, 3:100192.
doi: 10.1016/j.carpta.2022.100192
[25] 杨景峰, 罗志刚, 罗发兴. 淀粉晶体结构研究进展. 食品工业科技, 2007(7):240-243.
[26] 唐玮泽, 肖华西, 唐倩, 等. 多次湿热处理对大米淀粉结构和性质的影响. 中国粮油学报, 2020, 35(10):77-83.
[27] 张明. 湿热协同微波处理对淀粉理化性质及消化性的影响. 广州:华南理工大学, 2014.
[28] 贾淑玉, 张百汝, 李杰, 等. 湿热处理对山药粉理化及结构性质的影响. 食品工业科技, 2021, 42(7):22-26.
[29] Yang C Y, Zhong F, Goff H D, et al. Study on starch-protein interactions and their effects on physicochemical and digestible properties of the blends. Food Chemistry, 2018, 280(12):51-58.
doi: 10.1016/j.foodchem.2018.12.028
[30] Zhang K Y, Zhao D, Guo D, et al. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. International Journal of Biological Macromolecules, 2021, 183(4):481-489.
doi: 10.1016/j.ijbiomac.2021.04.180
[31] 张秀. 淀粉DSC热转变过程中分子变化机理. 天津:天津科技大学, 2017.
[32] 莫琰, 杨尚威, 赵灿, 等. 普鲁兰酶酶解对葛根淀粉理化特性的影响. 食品工业科技, 2022, 43(13):79-85.
[33] 王宁, 阮长青, 张东杰, 等. RS3型抗性淀粉制备方法研究进展. 中国粮油学报, 2021, 36(12):185-193.
[34] Olga A, Catarina G, Ana A, et al. Bread with a high level of resistant starch influenced the digestibility of the available starch fraction. Bioactive Carbohydrates and Dietary Fibre, 2022, 28:100318.
doi: 10.1016/j.bcdf.2022.100318
[35] Lei S Z, Liu L, Yue P Y, et al. Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats. Journal of Functional Foods, 2022, 92:105040.
doi: 10.1016/j.jff.2022.105040
[36] Shen L S, Li J Y, Li Y H. Resistant starch formation in rice: Genetic regulation and beyond. Plant Communications, 2022, 3(3):100329.
doi: 10.1016/j.xplc.2022.100329
[37] 周小理, 陈杰圣, 王士愁, 等. 不同处理方式对苦荞直链淀粉-黄酮复合物结构及消化性的影响. 粮食与油脂, 2022, 35(3):1-7,21.
[38] 王灼琛, 程江华. 苦荞抗性淀粉制备工艺的优化研究. 安徽农业科学, 2017, 45(36):72-74,179.
[39] 谢三都, 陈惠卿, 谢小伟, 等. 淮山药RS3抗性淀粉制备及其消化特性. 农产品加工, 2020(13):17-22.
[40] 徐忠, 岳进, 闫宇航, 等. 稻米粉和淀粉改性研究进展. 中国食品添加剂, 2021, 32(7):144-149.
[41] Xu P, Zhang S Y, Luo Z G, et al. Biotechnology and bioengineering of pullulanase:state of the art and perspectives. World Journal of Microbiology and Biotechnology, 2021, 37(3):7115-7123.
[42] Li S L, Deng X C, Gao Q Y. Production and characterization of resistant starch from hylon VII with pullulanase and heat- moisture treatment. 241st National Meeting and Exposition of the American-Chemical-Society, 2011.
[1] Yang Xiaolin, Duan Ying, Cai Suyun, He Runli, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Lihua. Molecular Cloning and Bioinformatics Analyzing of Laccase in Fagopyrum tataricum [J]. Crops, 2022, 38(3): 73-79.
[2] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!