作物杂志, 2021, 37(6): 36-45 doi: 10.16035/j.issn.1001-7283.2021.06.006

遗传育种·种质资源·生物技术

利用染色体片段置换系定位低温影响水稻萌芽期根长和芽长QTL

余镁霞,1, 邓浩东,1, 谭景艾1, 宋贵廷1, 吴光亮1, 陈利平1, 刘睿琦1, 邹安东1, 贺浩华1,2, 边建民,1,2

1作物生理生态与遗传育种教育部/江西省重点实验室,330045,江西南昌

2江西省水稻高水平工程研究中心,330045,江西南昌

Detection of QTL for Root Length and Bud Length at Germination Stage in Low Temperature Using CSSLs in Rice (Oryza sativa)

Yu Meixia,1, Deng Haodong,1, Tan Jing’ai1, Song Guiting1, Wu Guangliang1, Chen Liping1, Liu Ruiqi1, Zhou Andong1, He Haohua1,2, Bian Jianmin,1,2

1Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education/Jiangxi Province, Nanchang 330045, Jiangxi, China

2Jiangxi Super Rice Engineering Technology Research Center, Nanchang 330045, Jiangxi, China

通讯作者: 边建民,研究方向为作物遗传与分子育种,E-mail: jmbian81@126.com

第一联系人: 邓浩东为共同第一作者,研究方向为农学,E-mail: 1303051137@qq.com

收稿日期: 2020-12-14   修回日期: 2021-01-1   网络出版日期: 2021-11-22

基金资助: 国家重点研发计划(2016YFD0101800)
江西省杰出青年人才资助计划项目(20192BCB23010)
江西省自然科学基金(20192ACBL20017)
江西省教育厅科学技术研究项目(GJJ170241)

Received: 2020-12-14   Revised: 2021-01-1   Online: 2021-11-22

作者简介 About authors

余镁霞,研究方向为农学,E-mail: 1873831573@qq.com

摘要

根和芽的正常生长和发育对保障水稻产量有重要作用。为探究在低温条件下影响幼芽期根长和芽长的QTL,以9311(受体)和日本晴(供体)染色体片段置换系群体为材料,将萌发种子置于15℃低温处理7d,然后在25℃下恢复生长7d,连续测量根长和芽长,以25℃下根长和芽长作为对照,定位低温条件下影响根长和芽长的QTL。15℃条件下,定位到9个根长QTL,贡献率为8.65%~24.35%,其中qRL15T7.2qRL15T10.3在根生长不同时期被重复检测到;定位到9个影响芽长的QTL,贡献率为1.73%~28.89%,其中qBL15T6qBL15T7qBL15T9qBL15T10被重复检测到。25℃条件下,定位到9个根长QTL,贡献率为1.73%~28.89%,qRL25T7qRL25T9.3qRL25T10qRL25T12在根生长不同时期被重复检测到;定位到5个影响芽长QTL,贡献率为0.58%~38.26%,qBL25T3.3在芽生长不同时期被重复检测到。其中,第2、7、9和10号染色体上4个Bin标记区域存在既控制根长又控制芽长的QTL。通过比较发现,15℃下定位到的根长或芽长QTL与25℃定位到的根长或芽长QTL均不相同,表明低温条件下控制水稻幼芽期根和芽生长的遗传机制可能与正常温度下不同。

关键词: 水稻; 根长; 芽长; QTL; 染色体片段置换系

Abstract

The growth and development of roots and shoots have an important influence on yield. In order to explore the quantitative trait loci (QTL) affecting root length and bud length in bud bursting period under different temperature treatments, the chromosome segment substitution lines (CSSLs) population of 9311 (recipient)/Nipponbare (donor) used as the experimental materials. The germinated seeds were treated at 15℃ for seven days and then recovery grew at 25℃ for seven days. During the recovered period, 10 seeds were randomly selected to measure root length and bud length. After the treatments, the QTL associated with root length and bud length were detected by the CSSLs population. Under 15℃ treatments, nine QTLs affecting root length were detected, the range of contribution rates was 8.65%-24.35%. qRL15T7.2, and qRL15T10.3 were repeatedly detected at different periods of root growth; nine QTL affecting the bud length at 15℃ were detected, and the explained phenotypic variations were from 1.73% to 28.89%, qBL15T6, qBL15T7, qBL15T9, and qBL15T10 were repeatedly detected at different periods of bud growth; Under 25℃ treatments, nine QTL affecting the root length were located, the range of contribution rates was 1.73%-28.89%, qRL25T7, qRL25T9.3, qRL25T10, and qRL25T12 were repeatedly detected; five QTL affecting bud length were detected, and the contribution rates were 0.58%-38.26%, only qBL25T3.3 was repeatedly detected at different periods of bud growth. Four recombination bin markers were located on chromosomes 2, 7, 9, 10, also affected different traits at the same temperature or different traits at different temperatures. The results showed that the QTL affecting root length and bud length were different under different treatments. The results suggest that the genetic mechanism of controlling the growth of roots and buds at the bud stage of rice under low temperature may be different from under normal temperature.

Keywords: Rice; Root length; Bud length; QTL; CSSLs

PDF (1101KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

余镁霞, 邓浩东, 谭景艾, 宋贵廷, 吴光亮, 陈利平, 刘睿琦, 邹安东, 贺浩华, 边建民. 利用染色体片段置换系定位低温影响水稻萌芽期根长和芽长QTL. 作物杂志, 2021, 37(6): 36-45 doi:10.16035/j.issn.1001-7283.2021.06.006

Yu Meixia, Deng Haodong, Tan Jing’ai, Song Guiting, Wu Guangliang, Chen Liping, Liu Ruiqi, Zhou Andong, He Haohua, Bian Jianmin. Detection of QTL for Root Length and Bud Length at Germination Stage in Low Temperature Using CSSLs in Rice (Oryza sativa). Crops, 2021, 37(6): 36-45 doi:10.16035/j.issn.1001-7283.2021.06.006

水稻起源于热带和亚热带,对低温敏感。随着人口数量的增加,对水稻的需求量增加,导致水稻种植面积不断向高纬度低温地区扩展[1]。低温不仅影响水稻内部代谢物的产生,如脯氨酸、蔗糖和活性氧等,还会影响根和芽的形态[2]。水稻主要依靠根和芽的通气组织输送氧气[3],根和芽发育不良会使植株整体缺氧,不利于产量形成。因此,在低温条件下,研究水稻萌发期根和芽的遗传机制对培育耐冷优良品种和促进水稻生产具有重要指导作用。

水稻耐冷性是一个复杂的数量性状,可以通过较多指标衡量[4,5]。迄今为止,已通过存活率、发芽率、发芽力、种子活力等指标定位到多个与水稻耐冷相关的QTL,如qCTS12[6]qLTG3-1[7]COLD-1[8]qLTB3[9]qCTB7[10]等。但对衡量水稻耐冷性重要指标的根长和芽长的研究相对较少。

在水稻根系众多性状中,根长是一个能反映水稻在逆境条件下生长发育健壮程度的重要指标。Steele等[11]在灌溉和干旱胁迫处理下以近等基因系(near-isogenic line,NIL)为材料,在第9号染色体RM242-RM201间定位到1个根长QTL。Shimizu等[12]在磷缺乏的条件下,以籼稻品种Kasalath和粳稻品种日本晴构建的染色体片段置换系(chromosome fragment replacement line,CSSL)群体为材料,在第6号染色体定位到影响根长的QTL qREP-6。Mitsuhiro等[13]通过更换以NH4+为唯一氮源的营养液建立适合量取根长的生长条件,利用粳稻品种Koshihikari和籼稻品种Kasalath杂交衍生出的CSSL,在第6号染色体检测出控制根长的QTL qRL6.1。Wang等[14]利用短根保持系协青早B和长根恢复系R9308杂交获得的重组自交系(recombinant inbred line,RIL)群体,在第7号染色体检测到影响根长的QTL qRL7。徐晓明等[15]以超级稻协优9308衍生RIL群体与轮回亲本中恢9308回交多代的高代回交群体,在第4号染色体定位到影响根长的QTL qRL4。赵春芳等[16]在低磷条件下,以9311为背景亲本、日本晴为供体亲本衍生的染色体片段置换系为材料,在第5号染色体定位到1个与根长相关的QTL。

与根长相比,芽长作为另一个反映水稻生长发育健壮程度的重要指标,前人对其研究甚少。Redona等[17]利用粳稻Labelle和籼稻Black Gora衍生的RIL群体,在18℃和25℃温度条件下,定位到4个影响芽长的QTL。Fukuda等[18]通过籼稻和粳稻杂交的近交系在低温16℃条件下,检测到改善芽生长的QTL qSL3qSL8。Zhang等[19]利用粳稻Lemont和籼稻Teqing杂交衍生的RIL,在18℃条件下定位到4个影响芽长的主效QTL。此外,班超等[20]通过整理水旱条件下水稻根系性状QTL,得到水稻第1、2、3、5和11号染色体共11个区域很可能存在“一因多效”位点。这表明水稻根和芽可能存在协调发育的可能。但是对水稻根长和芽长的遗传表型及其二者关系,特别是低温条件下的关系知之甚少。

基于此,本研究利用9311(受体)/日本晴(供体)衍生的CSSL群体,在正常温度(25℃)和低温(15℃)条件下,分析水稻萌芽期根长和芽长的遗传表现,并定位其中影响水稻萌芽期根长和芽长QTL。同时分析QTL间的关系,为后续研究其遗传机制提供参考。

1 材料与方法

1.1 材料与试剂

从受体亲本籼稻9311和供体亲本粳稻日本晴杂交、回交的后代群体中选出121个性状稳定的株系,利用全基因组重测序技术进行基因分型,获得高质量的Bin标记;同时结合JoinMap 4.2软件构建CSSL群体的高密度图谱。

1.2 试验方法

从亲本和每个株系所收获的种子中选取40粒饱满健康的种子,经3.5%次氯酸钠消毒后,用蒸馏水漂洗干净。随后将种子置于底部放有一层滤纸的9cm无菌培养皿中,每个培养皿中加入恰好浸没种子的蒸馏水。并放置于28℃条件下催芽。待种子萌发后,选择其中整齐一致的30粒种子,置于15℃、12/12h(昼/夜)恒温培养箱处理7d,然后在25℃恢复生长7d,期间每天随机选取10粒幼芽测量根长(cm)和芽长(cm),测量后放回培养皿。

1.3 统计分析

采用IciMapping V4.2软件完备区间作图法(ICIM)对CSSL群体进行数据分析和QTL定位[21,22]。QTL按照q+目标性状+所在染色体号数或连锁群代号原则命名,名称用斜体[23,24]。用SPSS 22.0与Excel 2017进行显著性分析。

2 结果与分析

2.1 遗传图谱构建

利用多态性标记对CSSL群体基因型进行划分,与日本晴相同的基因型转化为标记2,与9311相同的基因型转化为标记0,无法判断的基因型转化为标记-1。以100kb为一个bin窗口,滑动所有子代样品的每条染色体,根据每个样品基因型来源,以bin为单位得到该群体每个子代marker信息,最终获得655个Bin标记(表1)。利用这些Bin标记构建染色体片段置换系图谱,其中约97%的基因组被日本晴片段置换覆盖(图1)。

表1   染色体标记数及bin间遗传距离

Table 1  The bin marker numbers and genetic distance between adjacent bins Mb

染色体
Chromosome
标记数目
Number
of marker
平均距离
Mean
distance
最小距离
Minimum
distance
最大距离
Maximum
distance
1680.640.103.40
2640.560.102.90
3590.620.103.45
4690.520.104.70
5470.640.103.60
6370.820.1012.85
7520.570.102.30
8340.840.158.90
9330.680.151.85
10590.400.101.00
11760.380.102.50
12570.470.102.95

新窗口打开| 下载CSV


图1

图1   染色体片段置换系图谱基因型图示

黑色代表日本晴基因型,白色代表9311基因型

Fig.1   Graphical genotypes of the CSSLs

Black indicates genotypes for Nipponbare, white indicates genotypes for 9311


2.2 2个温度下亲本和CSSL群体表型分析

表2得,15℃条件下,2个亲本根长在第1天和第2天、芽长在第6天和第7天存在显著差异,其余生长时期2个亲本根长或芽长差异不显著。25℃条件下,2个亲本的根长在第1、2、3、4天、芽长在第3、4、5、6天存在显著差异,其余生长时期差异不显著。CSSL群体中,幼芽根长和芽长均表现出不同程度的差异,在2个温度条件下均呈现连续变异,具有广泛的变异幅度,均表现出明显的超亲分离现象(表2图2)。表明15℃和25℃条件下,水稻幼芽的根长和芽长表现出明显的数量性状特征,符合QTL定位要求。

表2   亲本及CSSL群体在2个温度条件下根长和芽长表型分析

Table 2  Phenotype analysis of root length and bud length under two temperatures of their parents and CSSL population

温度
Temperature
性状
Trait
生长天数
Growth
day (d)
亲本ParentsCSSL群体CSSL population
9311
(cm)
日本晴
Nipponbare (cm)
均值
Mean (cm)
标准误
Standard error
偏度
Skewness
峰度
Kurtosis
最小值
Minimum (cm)
最大值
Maximum (cm)
15°C根长12.271.62**2.541.030.55-0.380.584.90
22.692.00*3.571.120.27-0.781.185.97
32.952.434.331.230.02-0.671.236.93
42.872.334.871.28-0.13-0.601.467.81
52.702.435.341.28-0.681.540.008.08
62.602.335.891.33-1.062.460.008.48
72.732.516.211.39-1.122.740.009.41
芽长12.452.011.660.590.95-0.370.903.16
23.073.082.920.48-0.16-0.111.673.88
33.383.403.930.46-1.393.552.054.87
43.593.464.500.48-1.535.402.415.60
53.674.294.750.63-4.0127.710.005.85
63.695.25**5.040.71-2.8723.190.007.66
74.135.53**5.560.91-1.3712.570.009.07
25°C根长10.430.00**0.400.330.32-1.210.001.07
21.400.28**1.830.900.05-1.110.203.62
32.741.61**3.181.17-0.06-0.920.925.70
43.752.49**3.961.14-0.31-0.791.476.21
54.503.884.751.22-0.44-0.772.086.94
65.494.605.241.17-0.62-0.221.877.28
76.265.715.741.13-0.46-0.422.647.81
芽长10.200.000.250.154.4425.490.081.18
20.820.250.810.292.4810.670.392.33
31.400.73*1.580.430.680.320.903.06
42.441.02**2.290.540.27-0.691.193.77
53.092.06**3.140.630.440.921.625.55
63.722.76**3.760.61-0.08-0.482.265.12
74.023.684.190.56-0.550.272.435.29

*”和“**”分别表示2个亲本之间的差异达到显著(P < 0.05)和极显著水平(P < 0.01)

*”and“**”indicate significant differences between the two parents at the levels of 0.05 and 0.01, respectively

新窗口打开| 下载CSV


图2

图2   15℃和25℃处理下CSSL群体表型分布

Fig.2   Phenotypic distribution of CSSL population at 15℃ and 25℃


2.3 2个温度条件下根长和芽长的QTL定位

2个温度条件下共定位32个QTL。其中,18个QTL与根长相关,14个QTL与芽长相关。这些QTL分布在水稻的第1、2、3、6~12号染色体上,贡献率为0.58%~38.26%。大部分QTL(75%)分布在水稻的第3、7~10号染色体(表3图3)上。有9个QTL增效等位基因来自日本晴,其余均来自9311。

表3   CSSL群体定位2个温度条件下幼芽生长不同时期影响根长和芽长的QTL

Table 3  QTL mapping for root length and bud length under two temperatures using CSSL population at different stages of sprout growth

温度
Temperature
性状
Trait
生长天数
Growth day (d)
染色体
Chromosome
QTL连锁标记
Linkage marker
LOD值
LOD value
加性效应
Additive effect
贡献率
Contribution rate (%)
15°C根长12qRL15T2.1chr2-bin1133.070.6911.42
77qRL15T7.1chr7-bin3853.23-1.158.66
4qRL15T7.2chr7-bin3872.66-1.038.68
63.84-1.2511.92
3qRL15T7.3chr7-bin3933.01-0.759.58
110qRL15T10.1chr10-bin5012.75-0.6110.17
4qRL15T10.2chr10-bin5044.08-1.1613.73
3qRL15T10.3chr10-bin5054.41-1.2814.46
65.36-1.5017.17
7qRL15T10.4chr10-bin5078.27-2.2124.36
5qRL15T10.5chr10-bin5104.12-1.1215.61
芽长11qBL15T1chr1-bin115.240.6617.05
12qBL15T2chr2-bin1133.590.4111.08
33qBL15T3.1chr3-bin1354.51-0.8613.82
3qBL15T3.2chr3-bin1542.79-0.478.22
56qBL15T6chr6-bin33925.362.3119.50
616.241.9214.72
27qBL15T7chr7-bin3932.70-0.3010.60
35.55-0.3517.37
43.67-0.3513.69
58qBL15T8chr8-bin4253.680.691.73
69qBL15T9chr9-bin4483.270.612.22
72.960.9511.54
410qBL15T10chr10-bin5072.57-0.438.55
531.09-2.2226.92
627.73-2.1928.90
25°C根长41qRL25T1chr1-bin522.93-0.926.03
57qRL25T7chr7-bin3453.07-0.736.04
63.56-0.9410.76
58qRL25T8.1chr8-bin4152.56-1.065.22
4qRL25T8.2chr8-bin4305.13-1.2511.08
69qRL25T9.1chr9-bin4392.83-0.728.43
5qRL25T9.2chr9-bin4484.37-1.169.24
2qRL25T9.3chr9-bin4593.32-0.6810.24
33.31-0.9312.82
45.84-0.9612.80
54.28-0.829.03
410qRL25T10chr10-bin4954.47-0.839.51
55.84-0.9812.74
63.10-0.819.28
412qRL25T12chr12-bin5993.11-0.956.43
54.47-1.189.48
芽长13qBL25T3.1chr3-bin13645.91-0.4629.14
1qBL25T3.2chr3-bin13851.600.4738.26
1qBL25T3.3chr3-bin14721.860.467.53
27.170.7725.74
32.700.7510.59
5qBL25T3.4chr3-bin1863.521.2213.60
111qBL25T11chr11-bin5962.590.060.58

新窗口打开| 下载CSV


图3

图3   CSSL群体定位的2个温度处理后影响根长和芽长QTL染色体分布

Fig.3   Distribution of QTL related root length and bud length on genetic map under two temperature treatments of CSSL population


2.3.1 15℃条件下QTL定位 15℃条件下,共定位到9个根长QTL:qRL15T2.1qRL15T7.1qRL15T7.2qRL15T7.3qRL15T10.1qRL15T10.2qRL15T10.3qRL15T10.4qRL15T10.5,贡献率为8.66%~24.36%。其中,qRL15T7.2qRL15T10.3在不同时期被重复检测到。除qRL15T2.1增效等位基因来自于日本晴外,其余均来自9311。

15℃条件下,定位到9个芽长QTL,分别位于第1~3、6~10号染色体上,贡献率为1.73%~28.90%,其中qBL15T6qBL15T7qBL15T9qBL15T10被重复检测到。qBL15T3.1qBL15T3.2qBL15T7qBL15T10促进芽生长的等位基因来自9311,而qBL15T1、qBL15T2、qBL15T6、qBL15T8qBL15T9促进芽生长的等位基因来自日本晴。

2.3.2 25℃条件下QTL定位 25℃条件下,在6条染色体共检测到9个影响根长的QTL,贡献率为5.22%~12.82%。所有位点上促使根生长的等位基因均来自9311。qRL25T7qRL25T9.3qRL25T10qRL25T12被重复检测到。

25℃条件下,有5个影响芽长的QTL被检测到。其中qBL25T11位于第11号染色体上,qBL25T3.1qBL25T3.2、qBL25T3.3qBL25T3.4分布于第3号染色体。QTL贡献率为0.58%~38.26%。只有qBL25T3.3在芽生长不同时期被重复检测到。除qBL25T3.1促进芽生长的等位基因来自9311,其余位点增效等位基因均来自日本晴。

2.4 多效性QTL分析

表4可知,第2、7、9、10号染色体的4个Bin标记区域存在同一温度影响不同性状或不同温度影响不同性状的位点。标记bin113、bin393和bin507所在的位点在15℃条件下对根长和芽长生长均有影响,这3个位点的增效等位基因均来自9311。标记bin448所在的位点对15℃芽长和25℃根长产生影响,其等位基因分别来源于日本晴和9311。

表4   对性状有多效性的染色体标记对应区域

Table 4  Chromosomal markers corresponding to regions with pleiotropic effects on traits

染色体
Chromosome
连锁标记
Linkage
marker
物理位置
Physical location
(Mb)
影响性状Affected trait
15℃25℃
2bin11319.75~20.75根长、芽长
7bin39328.25~28.70根长、芽长
9bin44811.15~12.45芽长根长
10bin50715.75~17.20根长、芽长

新窗口打开| 下载CSV


3 讨论

3.1 芽期低温胁迫后水稻恢复生长的遗传机制

为探究芽期低温胁迫后水稻恢复生长的遗传机制,本研究利用9311/日本晴衍生的CSSL群体在低温(15℃)和正常温度(25℃)下对根长和芽长进行了分析。结果显示,不同亲本在同一温度下存在差异。CSSL群体根长和芽长在萌发期不同阶段均表现出连续变异,表明低温和正常温度下水稻根长和芽长均表现为数量性状遗传。此外,在幼芽生长不同阶段,只有少数QTL被重复检测到,并且在不同时期其加性效应值不同,表明水稻幼芽期不同阶段基因是选择性表达,其耐低温性受多个QTL(基因)控制,这与陈利华等[25]研究结果类似。

2个温度条件下,生长前期9311根长显著长于日本晴,后期由于粳稻日本晴生长速度加快[26,27],根长差异不显著。生长前期2个亲本间芽长无显著差异,生长后期15℃条件下日本晴芽长显著长于9311,25℃条件下表现不明显,这可能与粳稻耐冷性强有关。在同一生长时期,2个温度条件下所定位的QTL均不同,即低温和正常温度下,控制水稻芽期生长的基因(QTL)均存在差异,表明低温处理后,幼芽恢复生长遗传机制与常温条件下正常生长可能存在差异。

3.2 定位的根长和芽长QTL比较

25℃条件下,检测到9个影响根长的QTL,其等位基因均来自于9311,其中影响最大的QTL为qRL25T9.3(LOD值16.75,贡献率44.89%);检测到5个影响芽长的QTL,其中影响最大的QTL为qBL25T3.3(LOD值51.60,贡献率43.86%),除qBL25T3.1外,其余QTL位点增效等位基因均来自于日本晴。结果表明,常温条件下2个亲本等位基因对根长和芽长均产生主要影响。15℃条件下,检测到9个影响根长的QTL,其中影响最大的QTL为qRL15T10.3(LOD值9.77,贡献率31.63%),除qRL15T2.1外,其余QTL位点增效等位基因均来自于9311;检测到9个影响芽长的QTL,qBL15T3.1qBL15T3.2qBL15T7qBL15T10中增效等位基因来自于9311,而qBL15T1、qBL15T2、qBL15T6、qBL15T8qBL15T9中增效等位基因来自于日本晴,其中影响最大的QTL为qBL15T10(LOD值61.39,贡献率64.37%),其增效等位基因来源于9311。结果表明,籼稻9311中也存在耐低温的基因。尽管较多的研究表明粳稻较籼稻耐冷,特别是幼苗期和抽穗扬花期,但Fujino等[28]和Miura等[29]研究结果表明,籼稻芽期耐冷性强于粳稻,同时定位了多个籼稻芽期耐冷QTL,这与本研究结果较一致,表明籼稻和粳稻中可能均存在耐冷的基因。因此,可以聚合这些耐低温的基因(QTL),并通过分子标记辅助选择技术将其转入到其他籼稻品种中,使其根和芽能够更好地在低温环境下生长。

本研究共定位了到32个影响幼芽生长的QTL。其中qRL15T2.1(19.75~20.75 Mb)与Courtois等[30]定位到影响每蘖根重QTL(RG171-RG157)位置接近。qRL25T1(35.9~38.35 Mb)与Zheng等[31]定位控制根粗(RZ730-RZ801)的QTL位置相近。徐吉臣等[32](C711-G103)研究中也曾提及,qRL25T9.1(6.5~7.25Mb)所在位点控制最大根长。qRL25T9.3(20.6~21.05Mb)所在位点分别影响水稻生长后期根中木质部血管数目及移栽后生根[33,34]。在qBL25T3.2位置分别定位到控制苗长的OsMRP5oni1[35,36]。此外,目前暂未发现与其他位点相同或接近的与根和芽相关性状的QTL。这些QTL的定位为解析水稻芽期遭遇低温冷害后恢复生长的遗传机制提供了参考。通过聚合这些QTL使水稻在芽期遭遇低温后更快地恢复生长。

3.3 多效性QTL分析

本研究表明,2个温度条件下,根和芽的生长相互影响。本试验发现标记区域bin113(qRL15T2.1qBL15T2)、bin393(qRL15T7.3qBL15T7)及bin507(qBL15T10qRL15T10.4)同时在15℃条件下对根长和芽长恢复生长有影响,bin448(qBL15T9qRL25T9.2)对15℃芽长和25℃根长有影响,为多效性QTL,影响根和芽的协同发育。因此将其视为根和芽协调发育中的多效QTL[37]

4 结论

以9311(受体)/日本晴(供体)CSSL群体为材料,在15℃低温处理后,共检测到9个影响根长及9个影响芽长的QTL。以25℃为对照,共检测到9个影响根长及5个影响芽长的QTL。除qRL15T2.1qRL25T1、qRL25T9.1qRL25T9.3qBL25T3.2外,其余均可能是新的影响根和芽生长的QTL。同时,在第2、7、9和10号染色体上4个Bin标记区域检测到影响根和芽协调发育的多效性QTL。此外,在15℃定位的根长或芽长QTL与在25℃定位的根长或芽长QTL均不相同,表明低温条件下控制水稻幼芽期根和芽生长的遗传机制可能与常温下不同。

参考文献

Zhang Z Y, Li J J, Pan Y H, et al.

Natural variation in CTB4a enhances rice adaptation to cold habitats

Nature Communications, 2017(8):14788.

[本文引用: 1]

刘次桃, 王威, 毛毕刚, .

水稻耐低温逆境研究:分子生理机制及育种展望

遗传, 2018, 40(3):171-185.

[本文引用: 1]

Groot T T, Bodegom V P, Meijer H, et al.

Gas Transport through the root-shoot transition zone of rice tillers

Plant and Soil, 2005, 277(1):107-116.

DOI:10.1007/s11104-005-0435-4      URL     [本文引用: 1]

韩龙植, 乔永利, 曹桂兰, .

水稻生长早期耐冷性QTL分析

中国水稻科学, 2005(2):122-126.

[本文引用: 1]

杨洛淼, 王敬国, 刘化龙, .

寒地粳稻发芽期和芽期的耐冷性QTL定位

作物杂志, 2014(6):44-51.

[本文引用: 1]

Andaya V C, Tai T H.

Fine mapping of the qCTS12 locus,a major QTL for seedling cold tolerance in rice

Theoretical and Applied Genetics, 2006, 113(3):467-475.

PMID:16741739      [本文引用: 1]

The temperate japonica rice cultivar M202 is the predominant variety grown in California due to its tolerance to low temperature stress, good grain quality and high yield. Earlier analysis of a recombinant inbred line mapping population derived from a cross between M202 and IR50, an indica cultivar that is highly sensitive to cold stress, resulted in the identification of a number of QTL conferring tolerance to cold-induced wilting and necrosis. A major QTL, qCTS12, located on the short arm of chromosome 12, contributes over 40% of the phenotypic variance. To identify the gene(s) underlying qCTS12, we have undertaken the fine mapping of this locus. Saturating the short arm of chromosome 12 with microsatellite markers revealed that qCTS12 is closest to RM7003. Using RM5746 and RM3103, which are immediately outside of RM7003, we screened 1,954 F(5)-F(10) lines to find recombinants in the qCTS12 region. Additional microsatellite markers were identified from publicly available genomic sequence and used to fine map qCTS12 to a region of approximately 87 kb located on the BAC clone OSJNBb0071I17. This region contains ten open reading frames (ORFs) consisting of five hypothetical and expressed proteins of unknown function, a transposon protein, a putative NBS-LRR disease resistance protein, two zeta class glutathione S-transferases (OsGSTZ1 and OsGSTZ2), and a DAHP synthetase. Further fine mapping with markers developed from the ORFs delimited the QTL to a region of about 55 kb. The most likely candidates for the gene(s) underlying qCTS12 are OsGSTZ1 and OsGSTZ2.

Fujino K, Sekiguchi H.

Origins of functional nucleotide polymorphisms in a major quantitative trait locus,qLTG3-1,controlling low-temperature germinability in rice

Plant Molecular Biology, 2011, 75(1/2):1-10.

DOI:10.1007/s11103-010-9697-1      URL     [本文引用: 1]

Li J L, Pan Y H, Guo H F, et al.

Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice

Theoretical and Applied Genetics, 2018, 131(1):157.

DOI:10.1007/s00122-017-2992-3      URL     [本文引用: 1]

Shi Y T, Yang S H.

COLD1:a cold sensor in rice

Science China Life Sciences, 2015, 58(4):409-410.

DOI:10.1007/s11427-015-4831-6      URL     [本文引用: 1]

Zhou L, Zeng Y W, Zheng W W, et al.

Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line

Theoretical and Applied Genetics, 2010, 121(5):895-905.

DOI:10.1007/s00122-010-1358-x      PMID:20512559      [本文引用: 1]

Low temperature at the booting stage is a serious abiotic stress in rice, and cold tolerance is a complex trait controlled by many quantitative trait loci (QTL). A QTL for cold tolerance at the booting stage in cold-tolerant near-isogenic rice line ZL1929-4 was analyzed. A total of 647 simple sequence repeat (SSR) markers distributed across 12 chromosomes were used to survey for polymorphisms between ZL1929-4 and the cold-sensitive japonica cultivar Towada, and nine were polymorphic. Single marker analysis revealed that markers on chromosome 7 were associated with cold tolerance. By interval mapping using an F(2) population from ZL1929-4 x Towada, a QTL for cold tolerance was detected on the long arm of chromosome 7. The QTL explained 9 and 21% of the phenotypic variances in the F(2) and F(3) generations, respectively. Recombinant plants were screened for two flanking markers, RM182 and RM1132, in an F(2) population with 2,810 plants. Two-step substitution mapping suggested that the QTL was located in a 92-kb interval between markers RI02905 and RM21862. This interval was present in BAC clone AP003804. We designated the QTL as qCTB7 (quantitative trait locus for cold tolerance at the booting stage on chromosome 7), and identified 12 putative candidate genes.

Steele K A, Price A H, Shashidhar H E, et al.

Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety

Theoretical and Applied Genetics, 2006, 112(2):208-221.

PMID:16208503      [本文引用: 1]

A marker-assisted back-crossing (MABC) breeding programme was conducted to improve the root morphological traits, and thereby drought tolerance, of the Indian upland rice variety, Kalinga III. This variety, the recurrent parent in the MABC, had not previously been used for quantitative trait locus (QTL) mapping. The donor parent was Azucena, an upland japonica variety from Philippines. Five segments on different chromosomes were targeted for introgression; four segments carried QTLs for improved root morphological traits (root length and thickness) and the fifth carried a recessive QTL for aroma. Some selection was made at non-target regions for recurrent parent alleles. We describe the selection made in three backcross (BC) generations and two further crosses between BC3 lines to pyramid (stack) all five target segments. Pyramids with four root QTLs were obtained in eight generations, completed in 6 years using 3,000 marker assays in a total of 323 lines. Twenty-two near-isogenic lines (NILs) were evaluated for root traits in five field experiments in Bangalore, India. The target segment on chromosome 9 (RM242-RM201) significantly increased root length under both irrigated and drought stress treatments, confirming that this root length QTL from Azucena functions in a novel genetic background. No significant effects on root length were found at the other four targets. Azucena alleles at the locus RM248 (below the target root QTL on chromosome 7) delayed flowering. Selection for the recurrent parent allele at this locus produced early-flowering NILs that were suited for upland environments in eastern India.

Shimizu A, Kato K, Komatsu A, et al.

Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.):fine QTL mapping and multivariate analysis of related traits

Theoretical and Applied Genetics, 2008, 117(6):987-996.

DOI:10.1007/s00122-008-0838-8      URL     [本文引用: 1]

Mitsuhiro O, Wataru T, Takeshi E, et al.

Fine-mapping of qRL6.1,a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions

Theoretical and Applied Genetics, 2010, 121(3):535-547.

DOI:10.1007/s00122-010-1328-3      PMID:20390245      [本文引用: 1]

Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4(+) as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between 'Koshihikari', a japonica variety, and 'Kasalath', an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 microM NH4(+). Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a 'Kasalath' segment of SL-218, which was localized to the long-arm of chromosome 6. The 'Kasalath' allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4(+) concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5-21.1% longer than that of 'Koshihikari' under different NH4(+) concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the 'Nipponbare' genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and 'Koshihikari'.

Wang H M, Xu X M, Zhan X D, et al.

Identification of qRL7,a major quantitative trait locus associated with rice root length in hydroponic conditions

Breeding Science, 2013, 63(3):267-274.

DOI:10.1270/jsbbs.63.267      URL     [本文引用: 1]

徐晓明, 张迎信, 王会民, .

一个水稻根长QTL qRL4的分离鉴定

中国水稻科学, 2016, 30(4):363-370.

[本文引用: 1]

赵春芳, 张亚东, 陈涛, .

低磷胁迫下水稻苗期根长性状的QTL定位

华北农学报, 2013, 28(6):6-10.

[本文引用: 1]

Redona E D, Mackill D J.

Mapping quantitative trait loci for seedling vigor in rice using RFLPs

Theoretical and Applied Genetics, 1996, 92(3/4):395-402.

DOI:10.1007/BF00223685      URL     [本文引用: 1]

Fukuda A, Terao T.

QTLs for shoot length and Chlorophyll content of rice seedlings grown under low-temperature conditions,using a cross between Indica and Japonica cultivars

Plant Production Science, 2015, 18(2):128-136.

DOI:10.1626/pps.18.128      URL     [本文引用: 1]

Zhang Z H, Yu S B, Yu T, et al.

Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.)

Field Crops Research, 2004, 91(2):161-170.

DOI:10.1016/j.fcr.2004.06.004      URL     [本文引用: 1]

班超, 张晓玲, 穆平.

水稻根系性状QTL的整合、分类和真实性分析

中国农学通报, 2009, 25(19):20-25.

[本文引用: 1]

Meng L, Li H H, Zhang L Y, et al.

QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations

The Crop Journal, 2015(3):269-283.

[本文引用: 1]

Li H H, Ye G Y, Wang J K.

A modified algorithm for the improvement of composite interval mapping

Genetics, 2007, 175(1):361-374.

DOI:10.1534/genetics.106.066811      URL     [本文引用: 1]

McCouch S R.

Committee on gene symbolization,nomenclature and linkage,rice genetics cooperative

Rice, 2008, 1(1):72-84.

DOI:10.1007/s12284-008-9004-9      URL     [本文引用: 1]

王存虎, 刘东, 许锐能, .

大豆叶柄角的QTL定位分析

作物学报, 2020, 46(1):9-19.

[本文引用: 1]

陈利华, 万杉.

不同温度条件下水稻种子活力QTL的定位分析

武汉植物学研究, 2005, 23(2):125-130.

[本文引用: 1]

代贵金, 华泽田, 陈温福, .

杂交粳稻、常规粳稻、旱稻及籼稻根系特征比较

沈阳农业大学学报, 2008, 39(5):515-519.

[本文引用: 1]

蔡昆争, 骆世明, 段舜山.

水稻群体根系特征与地上部生长发育和产量的关系

华南农业大学学报, 2005, 26(2):1-4.

[本文引用: 1]

Fujino K, Sekiguchi H, Sato T, et al.

Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.)

Theoretical and Applied Genetics, 2004, 108(5):794-799.

PMID:14624339      [本文引用: 1]

Low-temperature germination is one of the major determinants for stable stand establishment in the direct seeding method in temperate regions, and at high altitudes of tropical regions. Quantitative trait loci (QTLs) controlling low-temperature germinability in rice were identified using 122 backcross inbred lines (BILs) derived from a cross between temperate japonica varieties, Italica Livorno and Hayamasari. The germination rate at 15 degrees C was measured to represent low-temperature germination and used for QTL analysis. The germination rate at 15 degrees C for 7 days of Italica Livorno and Hayamasari was 98.7 and 26.8%, respectively, and that of BILs ranged from 0 to 83.3%. Using restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers, we constructed a linkage map which corresponded to about 90% of the rice genome. Three putative QTLs associated with low-temperature germination were detected. The most effective QTL, qLTG-3-1 on chromosome 3, accounted for 35.0% of the total phenotypic variation for low-temperature germinability. Two additional QTLs, qLTG-3-2 on chromosome 3 and qLTG-4 on chromosome 4, were detected and accounted for 17.4 and 5.5% of the total phenotypic variation, respectively. The Italica Livorno alleles in all detected QTLs increased the low-temperature germination rate.

Miura K, Lin S Y, Yano M, et al.

Mapping quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.)

Breeding Science, 2001, 51(4):293-299.

DOI:10.1270/jsbbs.51.293      URL     [本文引用: 1]

Courtois B, Shen L, Petalcorin W, et al.

Locating QTLs controlling constitutive root traits in the rice population IAC 165×Co39

Euphytica, 2003, 134(3):335-345.

DOI:10.1023/B:EUPH.0000004987.88718.d6      URL     [本文引用: 1]

Zheng H G, Babu R C, Pathan M S, et al.

Quantitative trait loci for root-penetration ability and root thickness in rice:comparison of genetic backgrounds

Genome, 2000, 43(1):53-61.

PMID:10701113      [本文引用: 1]

Drought is the major abiotic stress limiting rice (Oryza sativa) production and yield stability in rainfed lowland and upland ecosystems. Root systems play an important role in drought resistance. Incorporation of root selection criteria in drought resistance improvement is difficult due to lack of reliable and efficient screening techniques. Using a wax-petrolatum layer system simulated to compacted soil layers, root traits were evaluated in a doubled haploid (DH) population derived from the cross between 'IR64' and 'Azucena'. Twelve putative QTLs (quantitative trait loci) were detected by interval mapping comprising four QTLs for root-penetration ability, four QTLs for root thickness, two QTLs for penetrated root number, and two QTLs for total root number. These QTLs individually explained 8.4% to 16.4% of the phenotypic variation. No QTL was detected for maximum penetrated root length by interval mapping. One QTL located between RG104 and RG348 was found to influence both root-penetration ability and root thickness. QTLs for root-penetration ability and root thickness were compared across two populations, 'IR64'-'Azucena' and 'CO39'-'Moroberekan', and different testing conditions. The identified consistent QTLs could be used for marker-assisted selection for deep and thick roots with high root-penetration ability in rice.

徐吉臣, 李晶昭, 郑先武, .

苗期水稻根部性状的QTL定位

遗传学报, 2001, 28(5):433-439.

[本文引用: 1]

Uga Y, Okuno K, Yano M.

QTLs underlying natural variation in stele and xylem structures of rice root

Breeding Science, 2008, 58(1):7-14.

DOI:10.1270/jsbbs.58.7      URL     [本文引用: 1]

Ikeda H, Kamoshita A, Manabe T.

Genetic analysis of rooting ability of transplanted rice (Oryza sativa L.) under different water conditions

Journal of Experimental Botany, 2007, 58(2):309-318

PMID:17075079      [本文引用: 1]

In order to assess the benefits of superior rooting ability of rice (Oryza sativa L.) for growth after transplanting under water-limiting conditions, genetic differences in the rooting ability of rice seedlings 30 d after sowing, with their visible roots either pruned or not pruned, were quantified by several root parameters 4 d after transplanting (DAT), under flooded or non-flooded paddy fields (four treatments in total), together with production traits at maturity. Ninety-eight recombinant inbred lines from the two japonica ecotypes, a lowland variety Otomemochi, and an upland variety Yumenohatamochi, were genotyped with 107 simple sequence repeat (SSR) markers. Otomemochi in general produced more adventitious roots, partitioned a greater proportion of biomass to roots, and had a greater increment of root dry weight (DeltaRW) at 4 DAT than Yumenohatamochi, but these variety differences were less clear under non-flooded conditions without root pruning. Several quantitative trait loci (QTLs) associated with rooting ability were identified mainly in chromosomes 1, 4, and 6 across the four treatments or in combined analysis. On the other hand, QTLs for DeltaRW around RM2357 in chromosome 5 and for maximum new root length in RM215-RM205 in chromosome 9 were found only under root pruning treatments and under non-flooded conditions without root pruning, respectively. Greater DeltaRW was associated with higher head dry weight per hill at maturity only in the non-flooded and root-pruning treatments. This study suggests the importance of rooting ability after transplanting and, possibly, other mechanisms for adaptation to non-flooded conditions.

Li W X, Zhao H J, Pang W Q, et al.

Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice

Transgenic Research, 2014, 23(4):585-599.

DOI:10.1007/s11248-014-9792-1      URL     [本文引用: 1]

Yukihiro I, Fumiko K, Kazuma H, et al.

Fatty acid elongase is required for shoot development in rice

Plant Journal, 2011, 66(4):680-688.

DOI:10.1111/j.1365-313X.2011.04530.x      URL     [本文引用: 1]

Zhao Y, Jiang C H, Rehman R, et al.

Genetic analysis of roots and shoots in rice seedling by association mapping

Genes and Genomics, 2019, 41(1):95-105.

DOI:10.1007/s13258-018-0741-x      PMID:30242741      [本文引用: 1]

The vigorous shoots and roots help to improve drought resistance and post-transplanting recovery in rice seedlings (Oryza sativa L.). Hundreds of loci related to root system have been identified recently, but little research has been done on shoot traits, and the relationship between roots and shoots development is also still unclear. The objective of this study was to identify associated loci for roots and shoots in rice seedlings as well as to screen pleiotropic QTLs involved in coordinated development of roots and shoots. Using mini core collection of 273 cultivated rice accessions and 280 simple-sequence repeat markers, we investigated six traits [root length (RL), root thickness (RT), root weight (RW), shoot length (SL), shoot weight (SW) and ratio of root-to-shoot mass] in seedlings. Study was performed in hydroponic medium and genetic analysis was performed by association mapping using general linear model (GLM) with population structure (Q) and mixed linear model (MLM) involving Q and familial relatedness (K). Two subgroups indica and japonica showed significant differences in RT, RW and SW. Maximum correlation was observed between RW and SW. Using GLM 65 QTLs for root and 43 QTLs associated with shoot traits were detected. Among them, seven QTLs were present between RL and RW and five common QTLs were detected between SL and SW with high phenotypic variation effects (PVEs). Two key pleiotropic QTLs were also identified involved in collaborative development of roots and shoots in rice seedlings. Importantly, 17 and 10 QTLs were identified for root and shoot traits respectively in both studies of GLM and MLM. More common QTLs with high PVEs between root and shoot traits suggested that longitudinal growth (RL and SL) played an important role in accumulation of biomass (RW and SW). Considering the obvious phenotypic differences and fewer common QTLs between indica and japonica, we suggested that there could be different mechanisms of seedling development between both subpopulations. Key pleiotropic QTLs and QTLs identified for root and shoot traits in both studies of GLM and MLM could be preferentially used in marker-assisted breeding for strong rice seedling.

/