作物杂志, 2022, 38(6): 14-22 doi: 10.16035/j.issn.1001-7283.2022.06.003

专题综述

北京藜麦适应性栽培研究进展及展望

梅丽,

北京市农业技术推广站,100029,北京

Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing

Mei Li,

Beijing Agricultural Technology Extension Station, Beijing 100029, China

收稿日期: 2021-08-6   修回日期: 2021-10-21   网络出版日期: 2022-08-11

基金资助: 北京市科技转化与推广服务项目(2130106)

Received: 2021-08-6   Revised: 2021-10-21   Online: 2022-08-11

作者简介 About authors

梅丽,主要从事作物栽培与推广研究,E-mail:taxuexunmei82@163.com

摘要

藜麦营养全面,植株转色后花色艳丽,观赏期长达40d左右,且耐旱、耐寒,是一种集多功能为一体的新兴保健食粮。北京市自2015年引种藜麦,在适宜种植区、适宜品种筛选、营养品质检测、抗逆稳产栽培技术探索、菜品开发和技术示范等方面开展了大量工作。北京藜麦适应性栽培研究表明,藜麦在海拔≥300m、年均气温≤12.5℃、年均积温≤4802.0℃·d、年均光照强度≥2268.7lx的区域可正常成熟;“陇藜1号”、“陇藜3号”、“红藜1号”和“红藜2号”4个品种表现优良;藜麦米富含蛋白质,特别是“红藜1号”和“红藜2号”蛋白含量高达19.6%~20.0%;围绕栽培、农机、植保三大关键环节集成的藜麦抗逆稳产栽培技术体系在京郊示范应用面积为453.33hm2,应用率达100%;与一茬籽粒玉米相比,藜麦增收3.77万元/hm2。但区域发展不平衡、生产效率低和没有享受政策性农业保险等因素制约了藜麦在北京的持续健康发展。今后,应从加大政策和财政支持、提高藜麦机械化生产水平及建立健全相关标准制度等方面着手,做大做强北京藜麦产业,让藜麦的“小生产”能够在“大市场”中找到“微需求”,卖出好价钱。

关键词: 藜麦; 品种; 适应性; 栽培技术; 营养品质; 效益

Abstract

Quinoa is a new health food with comprehensive nutrition, with bright flower color and high drought and cold tolerance, the viewing period of which can continue more than 40 days after color conversion. Quinoa was introduced into Beijing in 2015, a lot of work had been done in suitable planting areas and suitable variety screening, nutritional quality detection, stress resistance and stable yield cultivation technology exploration, dish development, technology demonstration, etc. The study on adaptive cultivation of quinoa showed that quinoa could ripen normally in the region with altitude ≥300m, annual mean temperature ≤12.5°C, annual mean accumulated temperature ≤4802.0°C·d and annual mean light intensity ≥2268.7lx in Beijing. Four varieties (“Longli No.1”, “Longli No.3”, “Hongli No.1” and “Hongli No.2”) performed well. Quinoa rice had rich protein content, the protein content of “Hongli No.1” and “Hongli No.2” reached 19.6%-20.0%. The integrated cultivation techniques of resistance and stable yield of quinoa integrated around the three key links of cultivation, agricultural machinery and plant protection were applied in the suburb of Beijing for 453.33ha, and the application rate reached 100%. Compared with the crop of corn, quinoa increased income by 37 700 yuan/ha. However, the unbalanced regional development, low production efficiency, low degree of mechanization, and lack of policy-based agricultural insurance restrict the sustainable and healthy development of quinoa in Beijing. In the future, increasing policy and financial support, improving the mechanized production level of quinoa, and establishing and improving relevant standard systems should be made to expand and strengthen Beijing’s quinoa industry and make quinoa’s “small production” in “big market” to find “micro demand” and sell at a good price.

Keywords: Quinoa; Variety; Adaptability; Cultivation techniques; Nutritional quality; Benefit

PDF (558KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

梅丽. 北京藜麦适应性栽培研究进展及展望. 作物杂志, 2022, 38(6): 14-22 doi:10.16035/j.issn.1001-7283.2022.06.003

Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing. Crops, 2022, 38(6): 14-22 doi:10.16035/j.issn.1001-7283.2022.06.003

藜麦(Chenopodium quinoa Willd.)是苋科藜属的一年生双子叶植物[1],染色体数目2n=4x=36[2],原产于南美洲安第斯山脉高原地区,距今已有7000多年的栽培历史[3]。藜麦蛋白质含量高达16%~22%,氨基酸配比均衡,含有甲硫氨酸、苏氨酸、赖氨酸和色氨酸等在大多数谷物中为限制性氨基酸的必需氨基酸[4],被联合国国际粮农组织(FAO)推荐为最适宜人类的完美“全营养食品”[5-6]。藜麦株高60~300cm,成熟时呈黄色、紫色或者红色等[7],可以丰富园林绿化模式,形成独特的农作物景观[8]。此外,藜麦适应性强,能够抵御寒冷、干旱、低温、盐碱及贫瘠等一系列非生物胁迫环境,被认为是世界许多地区有发展前景的替代作物[9-12]。在甘肃、内蒙古和山西等少雨地区,旱作藜麦是实现农民增收致富的有效途径。王斌等[13]报道了2017年山西省忻州市静乐县(年降水量477.9mm)旱作藜麦1675.1~3637.2kg/hm2的高产水平。田计均等[14]对藜麦幼苗期、现蕾期、开花期和灌浆期植株水分胁迫的研究表明,干旱对现蕾期和开花期的藜麦影响较大,幼苗期和灌浆期藜麦耐受性较强。藜麦耐低温研究结果表明,苗期耐低温,2叶期植株在-4℃低温下持续4h只有轻微不良影响,减产9.2%[15];0℃以下低温持续14h左右,藜麦幼苗进入休眠期[16];但开花期和开花后的藜麦对霜冻敏感[17]

我国于1987年引种藜麦[18],2008年呈现规模化种植,2020年栽培面积达到2万hm2,种植分布20余省(区),总产量达2.88万t,成为世界第三大藜麦产区(数据来源于2020年藜麦产业发展报告)。

北京属资源型缺水城市。2015年北京市从山西省忻州市静乐县引种集优质高营养、抗旱抗寒耐盐碱、花序彩色可观赏等多功能于一体的新作物——藜麦,并在品种筛选、适宜种植区域筛选、抗逆稳产栽培技术集成、菜品开发和宣传推广等方面开展了大量工作。2015-2021年,藜麦在京郊示范种植453.33hm2,实现平均产量1.86t/hm2、效益4.19万元/hm2,成为扎根北京、促进农民增收的一种新型粮经作物。本文对2015年以来笔者主持开展的北京市藜麦适应性栽培研究工作进行了归纳总结,并对北京藜麦发展存在的问题提出了建议,旨在为藜麦在北京的持续健康发展提供参考借鉴。

1 藜麦在北京的生态适应性

1.1 藜麦在北京的适宜种植区域

2015年以来,在京郊延庆、房山、门头沟、昌平、密云、顺义、大兴、怀柔和海淀9个区的25个乡镇种植藜麦453.33hm2。生态适应性结果表明,在海拔≥300m、年均气温≤12.5℃、年均积温≤4802.0℃·d、年均光照强度≥2268.7lx的延庆、门头沟、房山山区及昌平、门头沟浅山区,藜麦均能正常成熟(表1表2)。

表1   京郊藜麦适应性栽培区的自然条件

Table 1  Natural conditions of quinoa adaptive cultivation area in Beijing suburb


District
乡镇
Village (town)
海拔
Altitude
(m)
年均气温
Mean annual
temperature
(℃)
年均积温
Mean annual
accumulated
temperature (℃·d)
年均光照强度
Mean annual light
intensity (lx)
年均降水量
Mean annual
precipitation
(mm)
延庆Yanqing
永宁、四海、珍珠泉、延庆、香
营、刘斌堡、旧县、陈营、康庄
478~728
8.9~9.3
3886.0~3971.1
2593.4~2678.0
420~441
门头沟Mentougou斋堂、雁翅、潭柘寺、清水252~44110.2~12.54216.2~4802.02268.7~2476.0450~568
房山Fangshan大安山、史家营770~95412.1~12.24750.0~4792.02430.0~2471.0539~544
昌平Changping延寿、小汤山、南邵58~33411.5~12.64687.3~4840.02486.5~2618.2478~507
怀柔Huairou琉璃庙34112.04690.62487.1623
密云Miyun东邵渠、溪翁庄、新城子105~37411.0~11.44210.0~4529.02435.8~2489.0575~628
海淀Haidian上庄5812.64792.02483.0505
大兴Daxing庞各庄3412.54820.02507.0519
顺义Shunyi南法信3212.44786.02482.0576

数据由北京市气候中心提供

The data were provided by Beijing Climate Center

新窗口打开| 下载CSV


表2   藜麦在京郊各适应性栽培区的表现

Table 2  Performance of quinoa in various adaptive cultivation areas in Beijing suburb


District
乡镇
Village (town)
种植面积
Planting area
(hm2)
品种(系)
Variety (line)
产量
Yield
(kg/hm2)
种植表现
Planting
performance
延庆Yanqing
永宁、四海、珍珠泉、延庆、香
营、刘斌堡、旧县、陈营、康庄
377.40
山西华青藜麦、山西汇天华藜麦、
陇藜1号、陇藜3号、红藜1号等
1132.5~2109.0
良好
门头沟Mentougou
斋堂、雁翅、潭柘寺、清水
33.73
山西华青藜麦、陇藜1号、陇藜3
号、红藜1号等
1072.5~1534.5
良好
房山Fangshan大安山、史家营24.73山西华青藜麦1117.5~1944.0良好
昌平Changping延寿、小汤山、南邵14.54陇藜1号、陇藜3号、红藜1号等1654.5~2214.0良好
怀柔Huairou琉璃庙0.33陇藜1号、陇藜3号1119.0倒伏、病害
密云Miyun东邵渠、溪翁庄、新城子1.13山西华青藜麦502.5倒伏、病害
海淀Haidian上庄0.07山西华青藜麦倒伏、病害
大兴Daxing庞各庄1.33山西汇天华藜麦202.5倒伏、病害
顺义Shunyi南法信0.07陇藜2号、陇藜3号454.5倒伏、病害
合计Total/453.33///

成熟期3点取样,每点10m2,产量取3点的平均值

The samples were collected at three sites in mature period, 10m2 for each site, and calculated the average yield of three sites

新窗口打开| 下载CSV


1.2 不同生态区适宜种植的品种

2015-2018年累计引进山西、甘肃、内蒙古、青海和河北等地的藜麦品种(系)60余份,比较筛选出4个高产抗逆型品种。其中,“陇藜1号”和“陇藜3号”是从甘肃省农业科学院引进的早熟、中粒型品种,在甘肃省生育期分别为130和110d左右,在北京地区生育期分别为89~101和87~93d,粮景兼用型,观赏期15d左右。“红藜1号”和“红藜2号”是北京市农业技术推广站从内蒙古引进,并经分离选择得到的晚熟、抗倒伏/折、耐高温型品种,在内蒙古生育期170d左右,在北京地区生育期140~149d,粮景兼用型,观赏期长达40d左右。各品种来源及突出特点见表3

表3   品种来源及特征特性

Table 3  Source and characteristics of varieties

品种Variety来源Source突出特点Prominent feature
陇藜1号Longli No.1甘肃省农业科学院早熟、中粒型品种,生育期89~101d,千粒重2.2~3.1g,穗红色,籽粒白色,观赏期约15d。
陇藜3号Longli No.3甘肃省农业科学院早熟、中粒型品种,生育期87~93d,千粒重2.1~2.9g,穗黄色,籽粒黄色,观赏期约15d。
红藜1号Hongli No.1
北京市农业技术推广站
晚熟、小粒型品种,生育期140~149d,千粒重0.7~1.0g,抗倒伏/折,耐高温,穗玫红色,籽粒红色,观赏期长达40d左右。
红藜2号Hongli No.2
北京市农业技术推广站
晚熟、小粒型品种,生育期140~149d,千粒重0.9~1.1g,抗倒伏/折,耐高温,穗橘黄色,籽粒红色,观赏期长达40d左右。

新窗口打开| 下载CSV


在延庆、房山和门头沟等海拔≥500m的山区,4个品种均适宜种植,但稳产性以“红藜1号”和“红藜2号”较好;在昌平、门头沟300m≤海拔<500m的浅山区适宜种植“红藜1号”和“红藜2号”[19]

1.3 各品种在不同区域的生长特性

1.3.1 延庆、门头沟、房山山区(海拔≥500m)

“陇藜1号”和“陇藜3号”生育期较短,平均分别为98和90d;矮秆型,特别是“陇藜3号”平均株高仅143.9cm;这2个品种穗子直立向上生长;千粒重接近,分别为2.3和2.2g。“红藜1号”和“红藜2号”平均生育期均为147d;高秆型,平均株高分别为221.7和219.9cm,茎秆粗壮;穗子像谷穗一样下垂,但籽粒较小,千粒重较低,分别为0.9和0.8g。各品种的其他生长特性见表4

表4   各品种在不同区域的生长特性

Table 4  Growth characteristics of varieties in different regions

区域
Region
品种
Variety
生育期
Growth
period (d)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
分枝数
Branch
number
主穗长
Main panicle
length (cm)
主穗宽
Main ear
width (cm)
单株粒重
Grain weight
per plant (g)
千粒重
1000-grain
weight (g)
山区
Mountain area
陇藜1号98±2.8181.1±17.222.1±1.014.4±5.244.2±14.715.5±3.646.2±20.62.3±0.2
陇藜3号90±3.0143.9±21.811.0±0.112.7±3.339.6±10.114.8±5.338.0±1.32.2±0.1
红藜1号147±2.0221.7±16.726.2±0.26.6±0.945.8±4.38.2±1.347.0±4.90.9±0.0
红藜2号147±2.2219.9±15.725.3±0.413.2±4.760.5±9.89.8±2.634.8±4.10.8±0.0
浅山区
Shallow mountainous area
陇藜1号99±7.3163.1±11.314.1±3.124.1±3.332.5±4.911.8±1.523.3±6.52.6±0.5
陇藜3号90±3.292.8±13.29.7±1.417.7±9.226.1±6.010.8±1.125.9±6.62.9±0.1
红藜1号141±1.9284.4±29.421.2±0.514.0±6.043.8±14.011.9±1.661.5±14.81.0±0.0
红藜2号141±1.6291.6±27.016.1±0.213.6±2.645.2±16.59.0±1.656.3±12.11.1±0.1

数据为2015年以来不同区域各品种的生长特性平均值及标准差

The data are the average value and standard deviation of growth characteristics of varieties in different regions since 2015

新窗口打开| 下载CSV


1.3.2 昌平和门头沟浅山区(300≤海拔<500m)

“陇藜1号”和“陇藜3号”在浅山区的生育期与山区接近,千粒重高于山区种植,株高降低,分枝数增加,但茎秆细弱,穗子较小,导致单株粒重较低。“红藜1号”和“红藜2号”在浅山区的平均生育期为141d,较种植在山区少6d;高秆型,平均株高分别为284.4和291.6cm,高于山区的种植表现;这2个品种在浅山区籽粒更饱满,平均千粒重分别为1.0和1.1g(表4)。此外,“红藜1号”和“红藜2号”虽然植株较高,但茎秆韧性强,在山区和浅山区倒伏/折率均为0。

1.4 典型品种在不同海拔的营养品质表现

采集334、478、587和635m 4个海拔梯度收获的“陇藜1号”、“陇藜3号”、“红藜1号”和“红藜2号”籽粒,委托谱尼测试集团股份有限公司参照GB 5009.5-2016、GB 5009.9-2016、GB 5009.6-2016、GB/T 5009.10-2003、GB 5009.91-2017、GB 5009.241-2017、GB 5009.92-2016和GB 5009.124-2016检测蛋白质、脂肪、淀粉、粗纤维、钾、镁、钙等微量元素及16种氨基酸含量。由表5可见,北京地区藜麦米的蛋白质、淀粉和脂肪平均含量分别为17.5%、44.5%和6.9%,均在Vega- Galvez等[20]的测定结果(12%~23%、32%~75%和1.8%~9.5%)范围之内。其中,蛋白质含量高于、淀粉含量低于、脂肪含量接近于国内现有报道(蛋白质14.03%~16.04%、淀粉50.65%~57.71%、脂肪5.68%~7.57%)[21-25],特别是“红藜1号”和“红藜2号”的蛋白质含量高达19.6%~20.0%,是优异的高蛋白品种。

表5   不同品种在不同海拔高度的营养品质表现 g/100g

Table 5  Nutritional quality performance of different varieties at different altitudes g/100g

地点
Site
海拔
Altitude (m)
品种
Variety
蛋白质
Protein
淀粉
Starch
脂肪
Fat
粗纤维
Crude fiber
KMgCa16种氨基酸总量
Total 16 amino acids
延庆下虎叫村
Xiahujiao village of Yanqing District
635陇藜1号14.049.16.34.510702881119.2
陇藜3号15.946.55.94.312102781239.7
延庆上垙村
Shangguang village of Yanqing District
587陇藜1号15.046.16.13.910302849410.2
陇藜3号17.247.55.73.487428412811.5
红藜1号19.642.86.84.671126411711.9
红藜2号19.542.96.94.671826911911.8
延庆西白庙村
Xibaimiao village of Yanqing District
478陇藜1号16.644.16.05.0164038022311.5
红藜1号20.042.98.04.490735311414.0
红藜2号19.842.77.94.290135111213.9
昌平分水岭村
Fenshuiling village of Changping District
334陇藜1号13.347.36.94.615102941318.7
陇藜3号17.341.87.04.0182045711512.0
红藜1号19.642.47.85.8163033013113.3
红藜2号19.641.98.05.9161032312913.2
平均Mean//17.544.56.94.6120232012711.6

新窗口打开| 下载CSV


从不同品种来看,“红藜1号”和“红藜2号”的营养物质含量接近,其蛋白质、脂肪和16种氨基酸总量高于“陇藜1号”和“陇藜3号”,淀粉含量低于“陇藜1号”和“陇藜3号”。“陇藜3号”与“陇藜1号”相比,前者的蛋白质和16种氨基酸总量高于后者,粗纤维含量低于后者。

从不同海拔来看,除淀粉的部分检测数据在海拔635m的下虎叫村和海拔587m的上垙村较高外,其他营养成分含量均表现为低海拔的延庆西白庙村和分水岭村优于高海拔的特征,具体为:海拔334m的分水岭村种植的藜麦脂肪、粗纤维和K含量最高;海拔478m的西白庙村种植的藜麦Mg含量较高;海拔478m的西白庙村和海拔334m的分水岭村藜麦蛋白质、16种氨基酸总量和Ca含量均优于海拔635m的下虎叫村和海拔587m的上垙村。这与时俊帅等[25]的研究结果一致,表明低海拔作物的氨基酸和蛋白质营养价值反而较高。

结合品种及海拔高度综合分析,“陇藜1号”在海拔478m的西白庙村品质表现最优,“陇藜3号”在海拔334m的分水岭村品质表现最优,“红藜1号”和“红藜2号”在海拔478m的西白庙村和海拔334m的分水岭村品质表现更好。

2 集成藜麦抗逆稳产栽培技术

除筛选适宜品种外,针对藜麦在北京地区种植要达到的抗逆稳产、优质高效和景观效果好等目标,围绕栽培、农机、植保三大关键环节,攻克了多重技术难点,集成了北京藜麦抗逆稳产栽培技术体系。

2.1 优化栽培措施

栽培措施主要考虑播种条件(包括前茬作物、土壤墒情)、播种时期、播种密度和化控防倒等方面。

2.1.1 播种条件

藜麦对土壤要求不严格,在瘠薄的砂性或石灰性土壤均可生长,但丰产要求选择中等以上肥力地块。2015年,在延庆区永宁镇太平街村(116°28′ E,40°47′ N,海拔520m)不同肥力地块种植藜麦的调查结果表明,上茬为高肥力菜地的藜麦产量为1.8t/hm2,与上茬未种植庄稼的低肥力砂石地比较,株高、茎粗和分枝数均较高,最终增产40.7%(表6表7)。生产中可底施复合肥或缓释肥750kg/hm2,有条件的还可配合增施一定的有机肥,后期不再追肥。藜麦不宜连作,需轮作倒茬[26]

表6   不同肥力地块对“山西华青藜麦”生长的影响

Table 6  Fertility effect on the growth of Shanxi Huaqing quinoa

调查日期(月-日)
Investigation date
(month-day)
株高Plant height (cm)茎粗Stem diameter (mm)分枝数Branch number
高肥地块
High-fertile plot
低肥地块
Low-fertile plot
高肥地块
High-fertile plot
低肥地块
Low-fertile plot
高肥地块
High-fertile plot
低肥地块
Low-fertile plot
06-23129.3±5.252.9±1.119.6±1.013.0±0.425.1±1.016.2±0.0
07-15182.1±5.5132.5±4.020.6±0.419.9±0.327.2±2.024.3±2.0
07-30190.9±1.5157.8±3.524.0±0.422.1±0.927.1±0.024.1±1.2

新窗口打开| 下载CSV


表7   不同肥力地块对藜麦产量及其构成因素的影响

Table 7  The effects of fertility on yield and its components of quinoa

处理
Treatment
实际密度(株/hm2
Actual seedling number (plant/hm2)
单株粒重
Grain weight per plant (g)
千粒重
1000-grain weight (g)
产量
Yield (kg/hm2)
高肥地块High-fertile plot57 180±67531.36±0.202.63±0.101793.0±33.0
低肥地块Low-fertile plot45 780±36027.94±0.302.49±0.101279.5±25.5

新窗口打开| 下载CSV


除草剂对藜麦出苗及产量影响较大。2017年,在延庆区延庆镇西白庙村(115°53′ E,40°27′ N,海拔478m)藜麦示范田的调查数据表明,与前茬未打过除草剂的地块比较,前茬打过除草剂的地块藜麦出苗量减少46.8%、生育进程延后、穗子变小、产量降低23.3%(表8表9)。如无法避免,应在开春土壤解冻后旋地1遍,促进除草剂挥发,或采用加大播种量的方式保全苗。种植当年还应做好隔离,避免周边作物使用的除草剂飘到藜麦地块,造成藜麦叶子卷曲、抽穗困难。

表8   前茬除草剂对“陇藜1号”生长的影响

Table 8  Effects of previous herbicides on the growth of “Longli No.1”

调查日期(月-日)
Investigation date
(month-day)
株高Plant height (cm)茎粗Stem diameter (mm)分枝数Branch number
未打除草剂
No herbicide
打除草剂
Herbicide
未打除草剂
No herbicide
打除草剂
Herbicide
未打除草剂
No herbicide
打除草剂
Herbicide
06-2935.0±1.018.2±1.014.3±0.112.0±0.121.3±0.017.2±2.0
07-18142.1±2.093.1±2.016.5±0.413.5±0.323.4±2.019.1±2.0
09-11196.4±1.4176.2±1.036.4±0.224.3±0.223.1±1.019.2±2.0

新窗口打开| 下载CSV


表9   前茬除草剂对藜麦产量及其构成因素的影响

Table 9  Effects of previous herbicides on yield and its components of quinoa

处理
Treatment
出苗数(株/hm2
Emergence number
(plant/hm2)
实际密度(株/hm2
Actual seedling number
(plant/hm2)
单株粒重
Grain weight per
plant (g)
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
未打除草剂No herbicide154 005±243068 370±156019.60±0.501.57±0.101340.1±65.9
打除草剂Herbicide82 005±73555 020±79518.67±0.301.26±0.101027.4±33.6

新窗口打开| 下载CSV


2.1.2 播种时间

2017年,对生育期内的各旬积温(数据由北京市气候中心提供)进行统计,并分析总结各品种在不同播期的表现,结果表明,“陇藜1号”需要≥0℃积温2700℃·d以上,5月中下旬在山区播种,丰产性、抗倒伏/折性、景观效果最好,9月中下旬可成熟。5月中旬前播种,藜麦灌浆期遇8月多雨大风天气,倒伏严重。6月中旬后播种,孕穗期遇高温,笄霉茎腐病严重,大部分主穗腐烂掉,只能靠侧枝结籽,产量极低[27]。“陇藜3号”需要≥0℃积温2500℃·d以上,适播期广,5月中下旬至6上旬均可在山区播种,以6月上旬播种丰产性、抗倒伏性及景观效果最好。“红藜1号”和“红藜2号”需要≥0℃积温3300℃·d以上,因此,诸如延庆区刘斌堡乡、四海镇和珍珠泉乡等年均气温8.9℃~9.0℃的东部山区播期不宜晚于4月25日,延庆其他区域播期不宜晚于5月5日,而昌平区延寿镇、门头沟区清水镇、门头沟区斋堂镇等年均气温10.2℃~12.5℃、海拔≥300m的区域播期最晚可推迟至5月20日,均可在10月上旬成熟。

2.1.3 抗旱播种

在适播期范围内,等雨或人工造墒播种,墒情以播种层含水量15%~20%为宜。2016年,设置A1(播前造墒、播深1cm)、A2(播前造墒、播深2cm)、A3(播前造墒、播深3cm)、A4(播前造墒、播深4cm)、B2(干播后浇蒙头水、播深2cm)、B4(干播后浇蒙头水、播深4cm)6个处理进行比较,结果表明,播前造墒较干旱播种浇蒙头水处理出苗率提高130.8%、整齐度提高57.6%。播深2~3cm最为适宜,较播深1cm出苗率提高37.6%~59.3%、整齐度提高44%~124%,较播深4cm出苗率提高49.0%~72.5%、整齐度提高28.6%~100.0%(表10)。

表10   不同播种处理对藜麦出苗的影响

Table 10  Effects of different sowing treatments on emergence of quinoa

处理
Treatment
始苗期(播后天数)
First seedling date (days after sowing)
终苗期(播后天数)
Last seedling date (days after sowing)
出苗率
Emergence rate (%)
整齐度
Uniformity
A15.0±0.516.0±0.541.8±0.42.5±0.1
A26.0±0.510.0±0.566.6±0.65.6±0.3
A36.0±0.312.0±0.257.5±0.63.6±0.2
A49.0±0.316.0±0.238.6±0.32.8±0.1
B28.0±0.512.0±0.536.3±0.82.9±0.1
B412.0±0.515.0±0.38.0±0.21.7±0.1

整齐度为播后25d测株高变异系数(CV),整齐度=1/CV

The uniformity is the variation coefficient (CV) of plant height measured 25 days after sowing, and the uniformity = 1/CV

新窗口打开| 下载CSV


2.1.4 种植密度

行距40~50cm、株距25~30cm时最佳,留苗密度6万~9万株/hm2为宜。

2.1.5 化控防倒

筛选出适宜的抗倒伏化控剂矮状素和金得乐。其中,矮壮素效果最好[28],可使藜麦株高降低60.7cm(69%),单株叶面积增加18.2%,侧枝折断率降低12.3%,增产114.7%。应在藜麦分枝期(株高50cm左右时)进行化控,化控药剂按1.3kg/hm2对水6300L进行喷施。

2.2 构建病虫害防治体系

藜麦的主要虫害为甜菜筒喙象。该虫世代重叠,为害隐蔽,难以及时发现,2016年在北京发生面积达85%,虫株率达50%~70%,严重地块高达100%,造成藜麦普遍倒伏,对藜麦生产造成了惨重的打击[29]。经与中国农业科学院专家联合攻关,2017年在国内首次发现和鉴定了藜麦上的甜菜筒喙象,并摸清了北京地区藜麦甜菜筒喙象年生活史和生物学特性[29-31]。研究提出甜菜筒喙象化学防治措施,即5月中旬至6月中旬,当百株产卵孔达到10~16个时,使用质量分数为4.5%的高效氯氰菊酯乳油1700倍液及20%的氯虫苯甲酰胺150mL/hm2在成虫产卵初期喷防,药后7d防效可达91.2%[32];配合种子调运中的检验检疫、轮作倒茬、秋冬铲除杂草,可起到更好的综合防治效果[33]

藜麦上的主要病害是钉孢叶斑病、茎点霉叶斑病和笄霉茎腐病。叶斑病始发于7月上中旬,病害从下而上蔓延,如防治不及时,8月中下旬至9月初,叶斑逐渐扩展到整个叶面,叶面脱水变黄,甚至枯死脱落。笄霉茎腐病始发于7月中下旬至8月初,病株顶端及茎秆部位出现腐烂症状,雨后高温,病原菌传播速度加快,如防治不及时,8月中下旬至9月初,染病植株顶梢枯死,植株倒伏、萎蔫,最终整株枯死。2017与中国农业科学院作物科学研究所合作,在国际上首次鉴定了藜麦笄霉茎腐病[34],2018年与北京市农林科学院合作,在国际上首次发现了1个藜麦叶斑病新种Heterosporicola beijingense sp. nov.[35]。筛选出2种防治藜麦叶斑病效果较好的药剂,即43%氟菌∙肟菌酯悬浮剂225g/hm2和43%戊唑醇悬浮剂900mL/hm2,药后15d防效分别达到84.1%和81.9%[36]。筛选出笄霉茎腐病防治药剂戊唑醇,在50、100、150、200mg/mL 4种浓度梯度下,对笄霉茎腐病的抑菌率均可达到100%。

2.3 农机农艺相结合提高生产效率

2018-2019年,通过谷物4行播种机、蔬菜播种机等4种机型的比较试验,筛选出适宜的藜麦播种机型——璟田2BS-JT10蔬菜精密播种机,作业速度0.23hm2/h,条播,调节行距至50cm、株距16cm,播后5d出苗,出苗数可达24万株/hm2。播种时应做到平整土地,细碎土壤,保证肥力充足;墒情良好;严格把握播种深度,播后严实镇压。

7-8月份藜麦植株高大,无法进行人工喷药,应用植保无人机喷防病害,作业效率13.33hm2/h,是人工打药效率的20倍,可节药30%,节水90%。

3 主要成效

3.1 经济效益突出

本着边试验边示范的原则,2015年至今,累计在延庆、门头沟和昌平等区示范推广藜麦453.33hm2,技术覆盖率100%。与一茬籽粒玉米相比,藜麦增收3.77万元/hm2表11)。部分典型示范区通过特色销售与观光采摘相结合,甚至获得了9万~30万元/hm2的经济效益,打造了门头沟区下清水村、门头沟区小龙门村和延庆区上垙村3个藜麦专业村,为门头沟清水花谷、潭柘寺等景观点增添了新的景观作物。

表11   藜麦成本、效益及较同面积籽粒玉米增收情况 万元/hm2

Table 11  Cost and benefit of quinoa compared with corn in the same area ×104 yuan/hm2

产量
Yield (t/hm2)
产值
Output value
成本
Cost
效益
Benefit
对照区效益
Benefit of control area
较对照增加经济效益
Increase economic benefits compared with the control
1.865.211.024.190.423.77

籽粒玉米的种植效益依据2015-2020年国家统计局公布的产量数据结合市场售价(28.00元/kg)、监测点成本平均计算得出

The planting benefit of grain corn is calculated based on the yield data published by the National Bureau of Statistics from 2015 to 2020, combined with the average market price (28.00 yuan/kg) and the cost of monitoring points

新窗口打开| 下载CSV


3.2 社会效益显著

2015年至今,累计举办各级培训班4次,培训专业技术人员、农户500余人次;组织现场观摩会2次,计100余人次;向基层技术人员发放技术明白纸及宣传资料1000余册;在农民日报、京郊日报等媒体宣传30余次,大大促进了该技术体系在京郊及周边地区的普及应用。此外,有河南、山东等地农户电话咨询藜麦种子及相关种植技术。以藜麦米为原料开发4类30道菜品,并将制作方法提供给农家乐和饭店等开发使用,丰富了市民对高品质、高营养藜麦菜品的需求。

3.3 生态效益凸显

藜麦可全程雨养旱作或只需浇透1次底墒水,较种植玉米、小麦节水1200~2550m3/hm2。藜麦转色后,穗子呈玫红、橘黄等颜色,部分品种观赏期长达40d左右,在秋季大部分作物呈现绿色的时节,能够产生强有力的视觉冲击力,营造其他作物无法媲美的农业景观。

4 发展中存在的问题

藜麦是一种集高营养、强抗逆、可观赏性为一体的崭新作物,在京郊海拔≥300m的区域可正常成熟,是北京市粮经作物的有益补充。但随着藜麦的产业化发展,一些问题也不断显现:一是区域发展不平衡。高效益与优质的加工工艺、良好的营销手段以及与三产的融合密不可分。门头沟区由于引进了藜麦加工生产线,实现了藜麦免淘洗,通过微商、门店、旅游景点等销售形式,藜麦米平均价格达到100~120元/kg;此外,通过在清水花谷、潭柘寺周边种植藜麦,吸引了更多的游客,增加了休闲旅游收入。但延庆、昌平等地种植的藜麦多数在本地用谷子加工机械脱粒,导致藜麦米碾得碎、品相较差,近2年种植规模呈萎缩状态。二是缺乏种子生产经营机构。由于不能对品种进行认定,市场上很难买到藜麦种子。北京市农业科技项目可为农户免费提供本地区繁育的种子,但无法保证持续稳定供应。部分农户存在自繁留种现象,导致藜麦品种一致性差、产量不稳定。三是机械化水平不高。除播种环节外,中耕除草及收获主要依赖人工。四是没有政策性农业保险。遇连续降雨或大风,极易造成倒伏/折、收割困难、减产等,存在种植风险。五是缺乏食品加工许可认证,无法进入商超销售。

5 建议与展望

5.1 加大政策和财政支持

经过2015-2018年藜麦栽培环节的技术攻克,藜麦在北京已能实现丰产、稳产。但种植只是产业链的一个环节,仍需延伸产业链,健全流通渠道,才能促进藜麦的产业化发展。政府的政策推动和财政支持是促进全产业链健康运行的关键,建议对从事藜麦种植、加工、销售的企业给予惠农扶持,降低他们的投资风险,同时,将藜麦列入政策性农业保险范畴,降低种植者的经济损失,减免他们的种植负担。政府也可发挥纽带桥梁作用,为种植户、加工厂、销售方搭建桥梁平台,拉动藜麦从耕种收到产加销各环节无缝咬合,形成高效分工合作。从目前北京藜麦的示范种植情况来看,延庆区有大块平整的土地,土壤肥力和气候条件都非常适宜藜麦种植,门头沟、昌平耕地少,且多为坡地和林下地,地力稍差一些,近年门头沟区开发了以“红藜1号”和“红藜2号”为加工原料的藜麦啤酒,需要政府助力门头沟与延庆之间的产销对接,实现以销定产、以产促销,惠及供需双方。此外,藜麦的适宜种植区分布在山区和浅山区,这些区域多数是低收入村,发展藜麦产业,打造山区特色农业能够有效带动乡村振兴。

5.2 提高机械化生产水平

农业产业化和农业机械化之间的关系是密不可分的,农业产业化的主要手段也是农业机械化。除播种环节外,还应实现中耕除草和收割环节的机械化。笔者2017年在延庆区延庆镇西白庙村进行藜麦试验示范时发现,应用玉米中耕除草机对藜麦进行苗期至拔节期的第1次中耕除草效果较好,但该机械要求地块平整,地块面积相对较大些。后期藜麦长高后,机械不便进地作业,还应引进小型中耕打草机进一步试用。此外,应进一步引进筛选适合本地区藜麦主栽品种的收割机,在门头沟、昌平以坡地和零星种植为主的地块可引进小型收割机,在延庆以大块地和平地为主的地块可引进中至大型收割机,从而降低种植藜麦的劳动力成本。值得重视的是,除配套全程机械外,还应提高机手素质,建立标准化作业规程,提高农机和农艺的适配性,最大程度地发挥机械化的优势,降低由于操作不规范造成的缺苗断垄及收获指数低等问题。

5.3 建立健全相关标准制度

藜麦作为一种近年发展起来的作物,既不在五大主要农作物行列,也未列入29种非主要农作物品种,目前北京市仍采取不审定、不登记的管理方式,但这并不表示藜麦种子可以以假充真、以次充好。应建立藜麦品种质量标准,并约束藜麦种子经营部门与种子生产者签定合同,保证藜麦种子质量。在加工环节,因藜麦脱壳属于食品加工,只有办理食品加工许可证后生产的藜麦米才能进入商超销售。因此,亟待建立藜麦米批量加工的相关扶持制度,促进藜麦米的销售和开发利用,使藜麦的“小生产”能够在“大市场”中找到“微需求”,卖出好价钱。

参考文献

任贵兴, 杨修仕, 么杨.

中国藜麦产业现状

作物杂志, 2015(5):1-5.

[本文引用: 1]

Heitkam T, Weber B, Walter I, et al.

Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes

The Plant Journal, 2020, 103(1):32-52.

DOI:10.1111/tpj.14705      PMID:31981259      [本文引用: 1]

If two related plant species hybridize, their genomes may be combined and duplicated within a single nucleus, thereby forming an allotetraploid. How the emerging plant balances two co-evolved genomes is still a matter of ongoing research. Here, we focus on satellite DNA (satDNA), the fastest turn-over sequence class in eukaryotes, aiming to trace its emergence, amplification, and loss during plant speciation and allopolyploidization. As a model, we used Chenopodium quinoa Willd. (quinoa), an allopolyploid crop with 2n = 4x = 36 chromosomes. Quinoa originated by hybridization of an unknown female American Chenopodium diploid (AA genome) with an unknown male Old World diploid species (BB genome), dating back 3.3-6.3 million years. Applying short read clustering to quinoa (AABB), C. pallidicaule (AA), and C. suecicum (BB) whole genome shotgun sequences, we classified their repetitive fractions, and identified and characterized seven satDNA families, together with the 5S rDNA model repeat. We show unequal satDNA amplification (two families) and exclusive occurrence (four families) in the AA and BB diploids by read mapping as well as Southern, genomic, and fluorescent in situ hybridization. Whereas the satDNA distributions support C. suecicum as possible parental species, we were able to exclude C. pallidicaule as progenitor due to unique repeat profiles. Using quinoa long reads and scaffolds, we detected only limited evidence of intergenomic homogenization of satDNA after allopolyploidization, but were able to exclude dispersal of 5S rRNA genes between subgenomes. Our results exemplify the complex route of tandem repeat evolution through Chenopodium speciation and allopolyploidization, and may provide sequence targets for the identification of quinoa's progenitors.© 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

Hariadi Y, Marandon K, Tian Y, et al.

Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels

Journal of Experimental Botany, 2011, 62:185-193.

DOI:10.1093/jxb/erq257      PMID:20732880      [本文引用: 1]

Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) were studied by exposing plants to six salinity levels (0-500 mM NaCl range) for 70 d. Salt stress was administered either by pre-mixing of the calculated amount of NaCl with the potting mix before seeds were planted or by the gradual increase of NaCl levels in the irrigation water. For both methods, the optimal plant growth and biomass was achieved between 100 mM and 200 mM NaCl, suggesting that quinoa possess a very efficient system to adjust osmotically for abrupt increases in NaCl stress. Up to 95% of osmotic adjustment in old leaves and between 80% and 85% of osmotic adjustment in young leaves was achieved by means of accumulation of inorganic ions (Na(+), K(+), and Cl(-)) at these NaCl levels, whilst the contribution of organic osmolytes was very limited. Consistently higher K(+) and lower Na(+) levels were found in young, as compared with old leaves, for all salinity treatments. The shoot sap K(+) progressively increased with increased salinity in old leaves; this is interpreted as evidence for the important role of free K(+) in leaf osmotic adjustment under saline conditions. A 5-fold increase in salinity level (from 100 mM to 500 mM) resulted in only a 50% increase in the sap Na(+) content, suggesting either a very strict control of xylem Na(+) loading or an efficient Na(+) removal from leaves. A very strong correlation between NaCl-induced K(+) and H(+) fluxes was observed in quinoa root, suggesting that a rapid NaCl-induced activation of H(+)-ATPase is needed to restore otherwise depolarized membrane potential and prevent further K(+) leak from the cytosol. Taken together, this work emphasizes the role of inorganic ions for osmotic adjustment in halophytes and calls for more in-depth studies of the mechanisms of vacuolar Na(+) sequestration, control of Na(+) and K(+) xylem loading, and their transport to the shoot.

墨菲K, 马坦吉翰J. 藜麦研究进展和可持续生产//任贵兴,赵钢,等译. 北京: 科学出版社, 2018.

[本文引用: 1]

Oshodi A A, Ogungbenle H N, Oladimeji M O.

Chemical composition,nutritionally valuable minerals and functional properties of benniseed (Sesamun radiatum),pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours

International Journal of Food Sciences and Nutrition, 1999, 50(5):325-331.

PMID:10719563      [本文引用: 1]

The chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) were studied. The results showed that the samples contained crude protein in the range of 11.4 to 22.5% with benniseed having the highest value of 2.5%, and pearl millet with the lowest value 11.4%. Ether extracts fall within the range of 6.3-44.3%. The moisture contents ranged from 5.2 to 11.2% while the ash contents were found to be in the range of 1.2 to 4.1% and the crude fibre ranged between 3.1 and 9.6%. The flours were relatively higher in maltose and D-ribose which were found to be in the range of 1.28-5.08 mg sugar in 5 ml sample. They also have low contents of glucose and fructose which ranged between 0.70 and 1.46 mg sugar in 5 ml sample. The predominant mineral was potassium which varied between 5150 and 7140 mg per kg sample while the samples were significantly low in manganese and copper. The protein solubility of the flours were found to have minimum solubility at pH 5 for benniseed, about pH 6 for pearl millet and quinoa. The seed flours also have good gelation property, water absorption capacity, emulsion capacity and stability. The oil absorption capacity and foaming capacity were low but the foams were relatively stable.

Stefano C, Antonella B, Lucia B, et al.

The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours

Food Chemistry, 2007, 100(4):1350-1355.

DOI:10.1016/j.foodchem.2005.10.072      URL     [本文引用: 1]

李娜娜, 丁汉凤, 郝俊杰, .

藜麦在中国的适宜性种植及发展展望

作物杂志, 2016(1):12-15.

[本文引用: 1]

王晨静, 赵习武, 陆国权, .

藜麦特性及开发利用研究进展

浙江农林大学学报, 2014, 31(2):296-301.

[本文引用: 1]

Spehar C R, Santos R L D.

Agronomic performance of quinoa selected in the Brazilian Savannah

Pesquisa Agropecuária Brasileira, 2005, 40(6):609-612.

DOI:10.1590/S0100-204X2005000600012      URL     [本文引用: 1]

Atul B, Deepak O.

Origin of genetic variability and improvement of quinoa (Chenopodium quinoa Willd.)

Gene Pool Diversity and Crop Improvement, 2016, 10:241-270.

[本文引用: 1]

Dini I, Donors G C, Dini A.

Nutritional and antinutritional compositon of Kancolla seeds:an interesting and underexploited andine food plant

Food Chemistry, 2005, 92(1):125-132.

DOI:10.1016/j.foodchem.2004.07.008      URL     [本文引用: 1]

Thanapornpoonpong S N, Vearasilp S, Pawelzik E, et al.

Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa

Journal of Agricultural and Food Chemistry, 2008, 56(23):11464-11470.

DOI:10.1021/jf802673x      PMID:19006392      [本文引用: 1]

The effect of nitrogen application levels (0.16 and 0.24 g N kg(-1) soil) on seed proteins and their amino acid compositions of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) was studied. Total proteins of amaranth and quinoa had high contents of lysine (6.3-8.2 g 100 g(-1) protein) but low contents of methionine (1.2-1.8 g 100 g(-1) protein). Seed proteins were fractionated on the basis of different solubility in water, saline, and buffer as albumin-1 (Albu-1), albumin-2 (Albu-2), globulin (Glob), and glutelin (Glu) and were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Albu-1 was high in lysine (5.4-8.6 g 100 g(-1) protein), while Albu-2, which is a part of storage proteins, had a high leucine content (7.2-8.9 g 100 g(-1) protein) as an effect of different nitrogen application levels. Glu fractions were well-balanced in their essential amino acids with the exception of methionine. In conclusion, nitrogen application can be used for the nutritional improvement in human diet by increasing and maintaining protein and essential amino acid contents.

王斌, 赵圆峰, 聂督, .

旱作藜麦养分吸收规律及养分限制因子研究

中国土壤与肥料, 2020(4):172-177.

[本文引用: 1]

田计均, 唐媛, 董雨, .

水分胁迫对不同发育时期藜麦生理的影响

生物学杂志, 2020, 37(6):73-76.

[本文引用: 1]

Jacobsen S E, Mujica A, Jensen C R.

The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors

Food Reviews International, 2003, 19:99-109.

DOI:10.1081/FRI-120018872      URL     [本文引用: 1]

沈菊, 杨起楠, 成明锁.

高原藜麦幼苗期抗寒性分析

现代农业科技, 2020(19):9-11.

[本文引用: 1]

Sanju C, Devilal B, Biswajit P, et al.

Quinoa:a potential crop for nutritional security

Just Agriculture, 2020, 1(2):93-100.

[本文引用: 1]

贡布扎西, 旺姆.

南美藜生物学特性及栽培技术

西藏科技, 1995, 70(4):19-22.

[本文引用: 1]

梅丽, 郭自军, 王立臣, .

15份藜麦资源在北京地区的生态适应性评价

中国农业大学学报, 2019, 24(9):27-36.

[本文引用: 1]

Vega-Gálvez A, Miranda M, Vergara J, et al.

Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.),an ancient Andean grain:a review

Journal of the Science of Food and Agriculture, 2010, 90:2541-2547.

DOI:10.1002/jsfa.4158      PMID:20814881      [本文引用: 1]

Quinoa, Chenopodium quinoa Willd., is an Amaranthacean, stress-tolerant plant cultivated along the Andes for the last 7000 years, challenging highly different environmental conditions ranging from Bolivia, up to 4.500 m of altitude, to sea level, in Chile. Its grains have higher nutritive value than traditional cereals and it is a promising worldwide cultivar for human consumption and nutrition. The quinoa has been called a pseudo-cereal for botanical reasons but also because of its unusual composition and exceptional balance between oil, protein and fat. The quinoa is an excellent example of 'functional food' that aims at lowering the risk of various diseases. Functional properties are given also by minerals, vitamins, fatty acids and antioxidants that can make a strong contribution to human nutrition, particularly to protect cell membranes, with proven good results in brain neuronal functions. Its minerals work as cofactors in antioxidant enzymes, adding higher value to its rich proteins. Quinoa also contains phytohormones, which offer an advantage over other plant foods for human nutrition.Copyright © 2010 Society of Chemical Industry.

延莎, 邢洁雯, 王晓闻.

不同菌种发酵对藜麦蛋白质特性及脂质构成的影响

中国农业科学, 2020, 53(10):2045-2054.

[本文引用: 1]

胡一波, 杨修仕, 陆平, .

中国北部藜麦品质性状的多样性和相关性分析

作物学报, 2017, 43(3):464-470.

[本文引用: 1]

石振兴, 杨修仕, 么杨, .

60份国内外藜麦材料子粒的品质性状分析

植物遗传资源学报, 2017, 18(1):88-93.

[本文引用: 1]

周海涛, 刘浩, 么杨, .

藜麦在张家口地区试种的表现与评价

植物遗传资源学报, 2014, 15(1):222-227.

[本文引用: 1]

时俊帅, 谷瑞, 陈双林, .

不同海拔的高节竹笋蛋白质营养品质差异分析

江西农业大学学报, 2019, 41(2):308-315.

[本文引用: 2]

杨科, 刘文瑜, 王旺田, .

连作对藜麦生长和生理特性的影响

江西农业大学学报, 2021, 43(2):244-252.

[本文引用: 1]

梅丽, 石春梅, 周吉红, .

北京浅山区藜麦不同播期避灾丰产及景观效应试验

中国农学通报, 2019, 35(36):26-32.

[本文引用: 1]

任永峰, 黄琴, 王志敏, .

不同化控剂对藜麦农艺性状及产量的影响

中国农业大学学报, 2018, 23(8):8-16.

[本文引用: 1]

张桂芬, 张金良, 万方浩, .

甜菜筒喙象Lixus subtilis Boheman在藜麦上大暴发

植物保护, 2017, 43(2):202-207.

[本文引用: 2]

张金良, 杨建国, 岳瑾, .

藜麦田甜菜筒喙象生物学特性初步研究

植物保护, 2018, 44(4):162-166.

[本文引用: 1]

张金良, 张桂芬, 张奥, .

北京地区藜麦甜菜筒喙象年生活史和生物学特性初探

中国农技推广, 2018, 34(5):54-56.

[本文引用: 1]

张金良, 梅丽, 袁志强, .

4.5%高效氯氰菊酯乳油不同浓度防治藜麦甜菜筒喙象效果试验研究

农业科技通讯, 2019(6):153-155.

[本文引用: 1]

张金良, 梅丽, 张桂芬, .

藜麦甜菜筒喙象发生规律与防治技术

农业工程, 2017, 7(2):133-135.

[本文引用: 1]

Sun S L, Zhu Z D, Zhang J L, et al.

Outbreak of choanephora stem rot caused by Choanephora cucurbitarum on quinoa (Chenopodium quinoa) in China

Plant Disease, 2018, 102(11):2379.

DOI:10.1094/PDIS-12-17-1922-PDN      [本文引用: 1]

<空>

Rashika S, Brahmanage, Liu M, et al.

Heterosporicola beijingense sp. nov. (Leptosphaeriaceae,Pleosporales) associated with Chenopodium quinoa leaf spots

Phytopathologia Mediterranea, 2020, 59(2):219-227.

[本文引用: 1]

张金良, 郭书辰, 梅丽, .

不同杀菌剂防治藜麦钉胞叶斑病试验研究初报

农业科技通讯, 2019(2):118-120.

[本文引用: 1]

/