作物杂志, 2022, 38(6): 174-180 doi: 10.16035/j.issn.1001-7283.2022.06.025

生理生化·植物营养·栽培耕作

调环酸钙对盐碱胁迫下绿豆苗期生长的调控作用

侯雪,1, 陈雨洁,1, 李春苗1, 方淑梅,1,2, 梁喜龙,1,2, 郑殿峰1,3

1黑龙江八一农垦大学,163319,黑龙江大庆

2黑龙江省植物生长调节剂工程技术研究中心,163319,黑龙江大庆

3广东海洋大学,524088,广东湛江

Regulating Effects of Prohexadione-Calcium on the Growth of Mung Bean Seedlings under Saline-Alkali Stress

Hou Xue,1, Chen Yujie,1, Li Chunmiao1, Fang Shumei,1,2, Liang Xilong,1,2, Zheng Dianfeng1,3

1Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China

2Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing 163319, Heilongjiang, China

3Guangdong Ocean University, Zhanjiang 524088, Guangdong, China

通讯作者: 方淑梅,从事植物抗逆及化学调控研究,E-mail:fangshumei520@126.com梁喜龙为共同通信作者,从事植物逆境生理及化学调控与高产研究,E-mail:xilongliang@126.com

收稿日期: 2021-09-6   修回日期: 2021-11-19   网络出版日期: 2022-10-11

基金资助: 大学生创新创业训练计划项目(201910223010)
黑龙江省农垦总局科技攻关项目(HNK135-02-10)
黑龙江省杂粮现代农业产业技术协同创新体系项目
黑龙江省杂粮生产与加工特色学科建设项目

Received: 2021-09-6   Revised: 2021-11-19   Online: 2022-10-11

作者简介 About authors

侯雪,从事植物逆境与化学调控研究,E-mail:1450674207@qq.com

陈雨洁为共同第一作者,从事植物化学调控相关研究,E-mail:1414554166@qq.com

摘要

以绿丰2号和绿丰5号为试验材料,于第1片复叶展开期进行150mmol/L的混合盐碱胁迫及叶面喷施不同浓度的调环酸钙(Pro-Ca),再继续培养15d后取样,研究不同浓度的Pro-Ca对绿豆苗期生长的调控作用。结果表明,叶面喷施适宜浓度的Pro-Ca(100mg/L)可通过增加渗透物质含量、提升抗氧化酶活性及降低MDA含量来维持细胞渗透势,消除活性氧,降低膜质过氧化程度,保护细胞膜结构,从而缓解盐碱胁迫对绿豆幼苗植株造成的伤害,提高绿豆幼苗抗盐碱的能力,具体表现为100mg/L Pro-Ca处理下绿丰2号和绿丰5号株高分别降低29.64%和21.72%,地下干重分别增加33.33%和50.00%,根冠比分别增加42.86%和8.33%,叶绿素含量分别增加15.77%和18.55%。

关键词: 盐碱胁迫; 调环酸钙; 绿豆; 渗透调节; 保护性酶

Abstract

Lüfeng 2 and Lüfeng 5 were used as the experiment materials. 150mmol/L mixed saline-alkali stress was applied and different concentrations of prohexadione-calcium (Pro-Ca) were foliar sprayed during the first compound leaf development period. Samples were collected after 15 days of continued growth to study the regulation effects of different concentrations of Pro-Ca on the growth of mung bean seedlings. The results showed that the suitable concentration of Pro-Ca (100mg/L) could maintain cell osmotic potential, eliminate reactive oxygen species, reduce the degree of membrane peroxidation, and protect cell membrane structure by increasing the content of osmotic substances, enhancing the activity of antioxidant enzymes, and reducing the content of MDA, thereby alleviating the damage to mung bean seedlings caused by salt-alkali stress, and improving the resistance of mung bean seedlings to salt-alkali. Specifically, the plant height of Lüfeng 2 and Lüfeng 5 decreased by 29.64% and 21.72%, the underground dry weight increased by 33.33% and 50.00%, and the root-to-shoot ratio increased by 42.86% and 8.33%, chlorophyll content increased by 15.77% and 18.55%, respectively, under the treatment of 100mg/L.

Keywords: Saline-alkali stress; Prohexadione-calcium; Mung bean; Osmotic adjustment; Protective enzymes

PDF (469KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

侯雪, 陈雨洁, 李春苗, 方淑梅, 梁喜龙, 郑殿峰. 调环酸钙对盐碱胁迫下绿豆苗期生长的调控作用. 作物杂志, 2022, 38(6): 174-180 doi:10.16035/j.issn.1001-7283.2022.06.025

Hou Xue, Chen Yujie, Li Chunmiao, Fang Shumei, Liang Xilong, Zheng Dianfeng. Regulating Effects of Prohexadione-Calcium on the Growth of Mung Bean Seedlings under Saline-Alkali Stress. Crops, 2022, 38(6): 174-180 doi:10.16035/j.issn.1001-7283.2022.06.025

随着人口增加和环境恶化,土壤盐碱化已成为日益严重的全球性问题。目前全球约有7%的土地受到盐碱化威胁,尚无有效措施来控制其传播[1]。土壤盐碱化对植物的胁迫效应包括盐胁迫和碱胁迫。根据含盐量和pH,盐碱胁迫的程度可分为轻度(含盐量小于3‰,pH为7.1~8.5)、中度(含盐量3‰~6‰,pH 8.5~9.5)和重度(含盐量超过6‰,pH超过9.5)[2]。中国松嫩平原、澳大利亚维多利亚州和美国加利福尼亚州是世界上3个典型的盐碱地土壤分布地区,其中,中国的盐碱地面积约为1亿hm2,东北松嫩平原占373万hm2,对中国农业生产造成一定的不良影响[3]

绿豆作为我国重要的杂豆类作物之一,因其具有生育周期短(65~90d)、播种范围广、抗旱、耐贫瘠和生态适应性强等特性已成为国际市场的高附加值农产品[4-6]。同时绿豆具有固氮养地的作用,其不仅可作为间作套种的良好前茬,也成为农业种植结构调整的重要作物,且可有效提高生态环境利用率[7-10]。我国盐碱土地面积分布广泛,但目前对提高绿豆耐盐碱能力的有效栽培技术研究有限,制约了绿豆产业发展。植物生长调节剂已经被广泛应用于提高作物抗逆性、抗倒伏、改善品质和促控生长发育等诸多方面。可以通过施加生长调节剂,使植物向着预期的方向和程度生长,从而达到调控作物生长发育、提高生态适应能力的作用。

调环酸钙(prohexadione-calcium,Pro-Ca)是一种抑制赤霉素生物合成的新型植物生长调节剂,其化学名称为3,5-二氧代-4-丙酰基环己烷羧酸钙,与多效唑及烯效唑等三唑类延缓剂相比,作物残留倾向低,对环境无污染,毒理学和生态毒理学特征优势明显,应用前景好,有可能取代三唑类生长延缓剂[11-12]。已有研究[13]表明,外源施加Pro-Ca可减少冷害下番茄果实的丙二醛(MDA)含量,降低磷脂酶D(PLD)和脂氧合酶(LOX)活性,并增加脯氨酸(Pro)含量来保持细胞膜的完整性,从而减轻冷害对番茄果实造成的损伤。暴露于干旱环境下的禾草经过LOX处理后降低了电解质渗漏和MDA含量,并显著提高超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)及过氧化氢酶(CAT)活性,增强植物对干旱的耐受性[14]。Pro-Ca也可减轻盐分对豆类幼苗的有害影响,研究[15]显示,Pro-Ca可以通过增加光合色素、总碳水化合物、总可溶性糖、Pro含量和抗氧化酶活性来提高蚕豆幼苗在盐胁迫下的耐受性。目前,人们对Pro-Ca在植物生长、发育和胁迫方面有了更加深入的研究,但对盐碱胁迫下的研究和应用还十分有限,尤其是对调控盐碱胁迫下的绿豆生理响应还鲜见报道。为此,本研究以盐碱抗性绿豆品种(绿丰2号,幼苗盐害指数<20)和盐碱敏感性绿豆品种(绿丰5号,60≤幼苗盐害指数<80)为试验材料,探讨不同浓度Pro-Ca对绿豆幼苗在盐碱胁迫下的调控作用,为深入揭示Pro-Ca抗盐碱胁迫作用及在农业生产中深入应用提供试验基础和依据。

1 材料与方法

1.1 试验材料

绿丰2号和绿丰5号均由国家杂粮工程技术研究中心提供,植物生长调节剂调环酸钙(Pro-Ca,5%)由四川国光农化股份有限公司提供。

1.2 试验设计

1.2.1 播种与幼苗培养

选取籽粒饱满、形状均一致的绿豆种子,经75%乙醇消毒后用无菌水冲洗3次,以蛭石为栽培基质在塑料盒(37cm×29cm× 11cm)中种植,每盒均播种30粒,出苗后定苗15株。于2019年在黑龙江八一农垦大学农学院温室中进行培养,昼/夜空气温度为23°C~28°C/20°C~ 25°C,光照强度为18 000lx。播种时每盆加入1.5L蒸馏水,自真叶长出时开始每3d补充1/2 Hoagland营养液0.5L。

1.2.2 盐碱胁迫处理

当幼苗长至复叶展开期,选取长势基本一致的绿豆幼苗同时进行盐碱胁迫及调节剂处理。其中盐碱胁迫以模拟典型盐碱土的实际情况进行,即使用混合盐碱溶液(NaCl:Na2SO4:NaHCO3:Na2CO3=1:9:9:1,pH=8.5±0.1)浓度为150mmol/L[16]。各处理及对照均透灌1.5L的盐碱溶液进行胁迫处理,处理3d后再补充0.5L盐碱溶液。

1.2.3 外源Pro-Ca处理

于盐碱胁迫处理的同时进行Pro-Ca调节剂处理,分别设置50、100、150、200mg/L 4个浓度梯度,以蒸馏水为对照(CK),从上向下每盒均匀喷施50mL(叶面形成一层水膜),每个处理均设置2盒。盐碱胁迫15d后,各处理均随机选取3株,用于生长参数和相对叶绿素含量(SPAD)的测定,试验设置4次重复。以第1片完全展开的复叶为研究对象,另随机选取3株植株叶片混合,取样后用液氮速冻立即置于-80℃低温冰箱中保存,用于各项生理指标测定,试验设置3次重复。

1.3 测定项目与方法
1.3.1 生长参数及生物量

分离地上和地下部分,测量株高、茎粗、地上干重和地下干重,并计算根冠比(R/S),R/S=根干重/地上部干重。

1.3.2 SPAD

以第1片完全展开的复叶为研究对象,采用便携式叶绿素仪(日本)测定SPAD。

1.3.3 渗透物质含量

取样后利用蒽酮比色法、磺基水杨酸法和考马斯亮蓝G-250染色法分别测定可溶性糖、Pro及可溶性蛋白质含量。

1.3.4 保护性酶活性及MDA含量

取样后分别用氮蓝四唑(NBT)法、愈创木酚法、紫外吸收法和硫代巴比妥酸(TBA)法测定SOD、POD、CAT活性及MDA含量。

1.4 数据处理

利用Microsoft Excel统计数据与绘图,SPSS 22.0软件进行ANOVA单因素方差分析,Duncanʼs进行不同处理间的比较检验,同时使用双因素方差分析测试喷施Pro-Ca与品种类型对盐碱胁迫交互作用的主要影响。

2 结果与分析

2.1 Pro-Ca对盐碱胁迫下绿豆苗期形态指标影响

表1可知,不同浓度Pro-Ca处理下的绿丰2号株高与CK处理相比分别降低了25.02%、29.64%、32.85%和18.90%,且均与CK处理差异达显著水平;而绿丰5号分别较CK处理降低了0.06%、21.72%、0.08%和10.32%,且在100mg/L处理下株高较CK处理降低达显著水平。由此可见,Pro-Ca对盐碱胁迫下绿豆苗期的株高均有不同程度的降低效果。绿丰2号茎粗与CK处理相比无明显改变,而绿丰5号茎粗则随Pro-Ca处理浓度的增加呈先增加后降低的趋势,在100mg/L处理下达最大值,较CK处理增加了13.33%,说明Pro-Ca对盐碱胁迫下绿丰5号的茎粗有一定程度的增加效果。Pro-Ca对盐碱胁迫下苗期绿豆的干物质积累量均有不同程度的促进作用,绿丰2号和绿丰5号的地上部干重均有不同程度的增加,但各组间与CK处理相比无显著差异,说明Pro-Ca对盐碱胁迫下绿丰2号与绿丰5号的地上部干重影响较小。绿丰2号在不同浓度Pro-Ca处理下地下部干重与CK处理相比各组间均呈显著增加水平,绿丰5号随Pro-Ca浓度的增加则呈先增加后降低的趋势,且在100mg/L处理下达显著差异水平。根冠比表现为绿丰2号受Pro-Ca影响较大,与CK处理相比分别增加了57.14%、42.86%、28.57%和50.00%,50mg/L处理达显著水平。绿丰5号在100mg/L Pro-Ca处理下根冠比虽然增加,但与CK处理相比差异不显著,说明Pro-Ca可以增加绿豆在盐碱胁迫下的根冠比,且对绿丰2号影响较为显著。双因素分析表明,Pro-Ca对盐碱胁迫下绿丰2号和绿丰5号的株高、地下部干重和根冠比均有极显著或显著的影响,且对绿丰5号茎粗的影响大于绿丰2号。

表1   Pro-Ca对盐碱胁迫下绿豆苗期形态指标的影响

Table 1  Effects of Pro-Ca on plant morphological indexes of mung bean seedlings under salt-alkali stress

处理浓度
Treatment concentration (mg/L)
品种
Variety
株高
Plant height (cm)
茎粗
Stem diameter (mm)
地上部干重
Shoot dry weight (g)
地下部干重
Root dry weight (g)
根冠比
R/S
0 (CK)绿丰2号20.58±2.12a1.43±0.19a0.20±0.05a0.03±0.01c0.14±0.07b
绿丰5号20.44±3.10a1.43±0.19b0.23±0.08a0.04±0.02b0.24±0.22a
50绿丰2号15.43±1.65bc1.45±0.33a0.24±0.10a0.05±0.01ab0.22±0.10a
绿丰5号19.18±2.12a1.55±0.24ab0.25±0.10a0.04±0.02b0.17±0.08ab
100绿丰2号14.48±1.67c1.43±0.26a0.23±0.10a0.04±0.02b0.20±0.09ab
绿丰5号16.00±1.49b1.65±0.26a0.28±0.08a0.08±0.08a0.26±0.17a
150绿丰2号13.82±2.64c1.43±0.18a0.24±0.09a0.04±0.02bc0.18±0.09ab
绿丰5号18.77±3.17a1.58±0.15ab0.25±0.07a0.03±0.01b0.12±0.05b
200绿丰2号16.69±1.96b1.38±0.18a0.28±0.11a0.05±0.01a0.21±0.10a
绿丰5号18.33±2.60a1.48±0.24ab0.29±0.14a0.04±0.01b0.17±0.09ab
FF-value处理10.912**0.8921.6294.480**2.720*
品种19.301**5.314*2.0861.9370.017
处理×品种2.823*0.5390.1914.058*2.944*

同列数据不同小写字母表示差异显著(P < 0.05),“**”表示差异极显著(P < 0.01),“*”表示差异显著(P < 0.05)。下同

Different lowercase letters in the same column indicate significant difference at 0.05 level, “**”indicates extremely significant difference at 0.01 level, “*”indicates significant difference at 0.05 level. The same below

新窗口打开| 下载CSV


2.2 Pro-Ca对盐碱胁迫下绿豆苗期SPAD的影响

图1所示,不同浓度Pro-Ca均一定程度地提高了绿丰2号和绿丰5号SPAD。随着Pro-Ca浓度的增加,绿丰2号SPAD与CK处理相比分别增加了14.88%、15.77%、14.88%和14.58%,而绿丰5号分别增加了7.86%、18.55%、10.69%和12.58%,且绿丰2号和绿丰5号的SPAD都在100mg/L Pro- Ca处理下达到峰值,但差异并未达显著水平。

图1

图1   Pro-Ca对盐碱胁迫下绿豆苗期SPAD的影响

相同小写字母表示处理间无显著差异(P > 0.05)

Fig.1   Effects of Pro-Ca on SPAD of mung bean seedlings under salt-alkali stress

The same letters indicate no significant difference with treatment (P > 0.05)


2.3 Pro-Ca对盐碱胁迫下绿豆苗期渗透调节物质含量的影响

2.3.1 Pro-Ca对可溶性糖含量的影响

表2可知,绿丰2号和绿丰5号叶片可溶性糖含量随着Pro-Ca浓度的增加呈先升后降的趋势,分别在150和100mg/L浓度下叶片可溶性糖含量最高,与其对照相比含量均增加了约2倍,当绿丰2号和绿丰5号分别用超过150和100mg/L浓度处理时,叶片可溶性糖含量逐渐降低。说明外源施加Pro-Ca可增加盐碱胁迫下绿豆苗期可溶性糖含量,从而缓解盐碱胁迫对绿豆造成的损伤。

表2   Pro-Ca对盐碱胁迫下绿豆苗期渗透调节物质含量的影响

Table 2  Effects of Pro-Ca on osmotic adjustment substances in mung bean seedlings under salt-alkali stress

处理浓度
Treatment concentration (mg/L)
品种
Variety
可溶性糖含量
Soluble sugar content (m/g FW)
可溶性蛋白质含量
Soluble protein content (m/g FW)
脯氨酸含量
Proline content (μg/g FW)
0(CK)绿丰2号3.89±0.17a4.44±0.02a18.58±5.62a
绿丰5号2.62±0.29a4.18±0.17b12.62±2.25a
50绿丰2号7.42±0.23bc6.37±0.12a21.94±1.92a
绿丰5号4.49±0.20a5.63±0.14ab15.31±3.58a
100绿丰2号10.63±0.34c4.63±0.19a35.68±2.25a
绿丰5号10.10±0.42b6.43±0.12a36.25±6.80a
150绿丰2号11.80±0.46c4.94±0.09a40.67±1.16a
绿丰5号9.27±0.26a4.93±0.05ab36.25±1.73a
200绿丰2号9.62±0.28b5.65±0.17a21.94±3.66a
绿丰5号9.09±0.10a4.72±0.05ab31.74±4.56a
FF-value处理702.983**156.345**43.608**
品种211.231**0.3462.836
处理×品种21.760**114.639**2.501

新窗口打开| 下载CSV


2.3.2 Pro-Ca对可溶性蛋白含量的影响

表2可知,在盐碱胁迫下,2个绿豆品种在不同浓度Pro-Ca处理下均可增加叶片可溶性蛋白含量。绿丰2号和绿丰5号分别在50和100mg/L的Pro-Ca处理下达到最大值,与其对照相比分别增加了43.47%和53.83%,随后逐渐降低。说明在盐碱胁迫下Pro-Ca对绿豆苗期可溶性蛋白含量调控的最适浓度分别为50和100mg/L。

2.3.3 Pro-Ca对Pro含量的影响

表2可知,在盐碱胁迫下,绿丰2号和绿丰5号叶片的Pro含量随着Pro-Ca浓度的增加呈先升高后降低的趋势,且在100和150mg/L处理下Pro含量相对较高,其中,绿丰2号叶片的Pro含量较CK处理分别增加了92.03%和118.89%,绿丰5号叶片的Pro含量较CK处理均增加了187.24%,随后呈下降趋势。说明在100和150mg/L处理下,Pro-Ca对Pro的调节能力强。双因素分析表明,不同浓度Pro-Ca对绿豆叶片可溶性糖和可溶性蛋白含量的影响均达极显著差异水平,不同浓度Pro-Ca与不同品种交互作用显示,除对Pro含量无显著影响外,对绿豆叶片可溶性糖和可溶性蛋白含量均达极显著差异水平。

2.4 Pro-Ca对盐碱胁迫下绿豆苗期抗氧化酶活性的影响
2.4.1 Pro-Ca对SOD活性的影响

表3可以看出,在盐碱胁迫下,各处理组绿豆叶片SOD活性均高于CK,并随着Pro-Ca浓度的增加其活性呈先增加后降低的趋势,均在100mg/L处理下达到峰值,与对照相比呈显著差异水平。绿丰2号和绿丰5号叶片SOD活性较同期CK相比分别增加了16.90%和12.57%,当Pro-Ca浓度超过100mg/L时,SOD的活性开始下降。说明盐碱胁迫下喷施Pro-Ca可提高绿豆叶片的SOD活性,减少绿豆体内活性氧自由基对细胞造成的伤害,且在100mg/L处理下绿豆叶片SOD活性最强,之后随着浓度的增加SOD活性反而降低。

表3   Pro-Ca对盐碱胁迫下绿豆苗期SOD,POD和CAT活性的影响

Table 3  Effects of Pro-Ca on the SOD, POD and CAT activity of mung bean seedlings under salt-alkali stress

处理浓度
Treatment concentration (mg/L)
品种
Variety
SOD活性
SOD activity (U/g FW)
POD活性
POD activity (U/g FW)
CAT活性
CAT activity (U/g FW)
0(CK)绿丰2号285.71±4.79a1188.89±732.07a311.11±27.76a
绿丰5号310.08±18.43a877.78±150.31b404.44±20.37a
50绿丰2号323.81±15.74bc2388.89±171.05a337.78±40.73a
绿丰5号330.90±19.17a1788.89±69.39ab524.44±7.70a
100绿丰2号334.00±2.03c3644.44±509.18a466.67±48.07a
绿丰5号349.06±23.93b2344.44±101.84a546.67±0.00a
150绿丰2号319.82±21.48c2433.33±200.00a391.11±20.37a
绿丰5号324.25±5.79a2255.56±69.39ab471.11±7.70a
200绿丰2号310.08±18.09b1911.11±69.39a315.56±7.70a
绿丰5号318.05±2.77a1988.89±830.22ab317.78±27.76a
FF-value处理6.566**18.911**33.286**
品种4.36710.008**135.309**
处理×品种0.4082.6144.605**

新窗口打开| 下载CSV


2.4.2 Pro-Ca对POD活性的影响

表3可以看出,2个绿豆品种叶片POD活性随着Pro-Ca浓度的增加呈先升后降的趋势,且POD活性都在100mg/L处理下显著高于CK处理并达到峰值。绿丰2号和绿丰5号叶片的POD活性与CK处理相比分别增加了206.54%和167.09%,当Pro-Ca浓度超过100mg/L时POD活性开始下降。说明喷施Pro-Ca可以提高盐碱胁迫下绿豆叶片的POD活性,从而缓解盐碱胁迫对绿豆造成的伤害。从总体上来看,100mg/L Pro-Ca处理为最适浓度,且对具有一定耐盐能力的绿丰2号调控效果更好。

2.4.3 Pro-Ca对CAT活性的影响

表3可以看出,2个绿豆品种叶片CAT活性均随着Pro-Ca浓度的增加呈先上升后降低的趋势,各处理组绿豆叶片CAT活性均高于CK处理。其中在50、100和150mg/L处理下与CK处理相比达差异显著水平,绿丰2号与CK处理相比依次分别增加了8.50%、50.00%和25.71%,绿丰5号分别增加了29.67%、35.17%和16.48%。双因素分析表明不同浓度Pro-Ca对绿豆叶片SOD、POD和CAT活性的影响均达极显著差异水平,但不同浓度Pro-Ca与不同品种交互作用除对CAT影响极显著外,对SOD和POD活性均无显著影响。

2.5 Pro-Ca对盐碱胁迫下绿豆苗期MDA含量的影响

表4所示盐碱胁迫下各处理组绿豆叶片MDA含量均低于CK处理。在100和200mg/L处理下绿丰2号和绿丰5号叶片MDA含量与CK处理相比达显著差异水平,且在200mg/L处理下叶片MDA含量均达到最低,分别比CK处理降低36.07%和17.12%。说明盐碱胁迫下,外源施加Pro-Ca均可降低绿豆叶片MDA含量,从而降低绿豆膜质过氧化程度,增加细胞膜结构稳定性。双因素分析表明,不同浓度Pro-Ca及不同品种类型对绿豆MDA含量影响达极显著差异水平,但交互作用显示不同浓度Pro-Ca对盐碱胁迫下绿丰2号和绿丰5号MDA含量无显著影响。

表4   Pro-Ca对盐碱胁迫下绿豆苗期MDA含量的影响

Table 4  Effects of Pro-Ca on MDA content (mmol/g FW) of mung bean seedlings under salt-alkali stress

处理浓度
Treatment
concentration (mg/L)
品种
Variety
MDA含量
MDA content
(mmol/g FW)
0 (CK)绿丰2号33.99±0.84a
绿丰5号23.66±0.67a
50绿丰2号28.52±7.57bc
绿丰5号22.21±0.28a
100绿丰2号26.20±0.51c
绿丰5号20.99±1.38b
150绿丰2号26.02±0.44c
绿丰5号22.00±2.20a
200绿丰2号21.73±0.55b
绿丰5号19.61±0.60a
FF-value处理7.953**
品种35.401**
处理×品种2.124

新窗口打开| 下载CSV


3 讨论

植物的株高、茎粗、干物质积累量及根冠比等生长指标是植物耐盐碱能力最直接的反映和表现。在盐碱胁迫下,植物的生长指标会受到不同程度的抑制,根冠比增加[17-19]。目前,植物生长调节剂已被广泛推广并应用于提高作物的抗性能力方面。本研究发现,在盐碱胁迫下,叶面喷施Pro-Ca可在一定程度上降低绿豆株高,促进地上部和地下部干物质积累,其中,在不同浓度Pro-Ca处理下绿豆的地上部干重虽有不同程度的增加,但不显著。地下部干重在100mg/L处理下与CK处理相比呈显著差异水平,说明Pro-Ca对盐碱胁迫下绿丰2号和绿丰5号的地下部干重影响比地上部更显著。根冠比增加是植物的一种自我保护效应,有利于植物吸收水分和营养物质,降低蒸腾速率和缓解由各种胁迫造成的缺水伤害[20]。本研究发现,100mg/L Pro-Ca可增加绿豆根冠比。因此,Pro-Ca有助于缓解盐碱胁迫对绿豆造成的损伤。

光合作用是植物进行正常生命活动最重要的形式之一,而叶绿素含量通常被作为衡量植物叶片光合作用的重要指标,盐胁迫通常会造成植物叶绿素含量下降,减弱光合能力[21]。而应用Pro-Ca可以增加植物体内叶绿素含量,提高植物光合能力[22]。本研究发现,绿豆在Pro-Ca各组处理下均增加了SPAD,且都在100mg/L下达到峰值,说明外源施加Pro-Ca可以维持盐碱胁迫下绿豆叶片的SPAD,保证植物进行正常的光合作用,增强绿豆对盐碱胁迫的抗性,这与Bekheta等[15]在蚕豆上施加Pro-Ca可以增加其在盐胁迫下叶绿素含量的结果相一致。

渗透调节是植物响应盐碱胁迫的一种有效策略,在盐碱胁迫下,植物通过在代谢过程中积累与合成可溶性糖、可溶性蛋白和Pro等渗透调节物质来平衡体内细胞的渗透势,进而缓解盐碱胁迫造成的伤害[23-27]。Bekheta等[15]研究发现,Pro-Ca可以促进盐胁迫下蚕豆体内渗透调节物质的积累来提高耐盐性。Aghdam[28]研究发现,Pro-Ca可以大大增加番茄中Pro含量,从而增强对冷害的抗性。本试验结果表明,Pro-Ca可以增加盐碱胁迫下绿豆叶片的可溶性糖、可溶性蛋白和Pro含量,其中,可溶性糖和Pro含量随着Pro-Ca的增加呈先增后降的趋势,且均在100mg/L处理下达到峰值;绿丰2号和绿丰5号叶片可溶性蛋白含量分别在50和100mg/L的Pro-Ca处理下达到最大值,随后逐渐降低。从总体上来看,100mg/L Pro-Ca处理时效果最佳,表明外源施加Pro-Ca可以增加绿豆叶片渗透调节物质含量,增强绿豆对盐碱胁迫的抵抗能力,维持植株正常生长。

盐碱胁迫可导致植物体内活性氧代谢紊乱,造成细胞膜脂过氧化,甚至诱导细胞死亡。而抗氧化酶系统是植物对盐胁迫响应抵御盐害的关键机制,其中,抗氧化酶SOD、POD和CAT可以清除植物体内的活性氧,增强抗膜质过氧化作用,缓解盐碱胁迫的伤害[29]。本试验发现,外源施加Pro-Ca均可提高绿豆叶片的SOD、POD和CAT活性,且总体上均随着Pro-Ca浓度的增加呈先上升后下降的趋势,并在100mg/L处理下达到峰值,其中Pro-Ca对SOD活性的调控效果在2个绿豆品种上差异不显著,而POD活性的增强在耐盐品种中作用效果更好,CAT的作用效果同样要低于盐敏感型品种。MDA是膜脂过氧化反应的主要产物之一,在盐碱环境下会损伤自身细胞膜系统,引起膜脂过氧化反应,其含量的多少在一定程度上反映膜损伤程度的大小[30-31]。本试验发现,外源施加Pro-Ca降低了MDA含量,维持了细胞膜的稳定性,这与Ramírez等[32]的研究结果相似,说明外源施加Pro-Ca可增强绿豆的抗氧化保护系统,减少植物体内过氧化物积累,从而降低膜质过氧化程度,增强绿豆在盐碱胁迫下的抗性能力。

4 结论

不同浓度的Pro-Ca可以增加绿豆叶片SPAD,保证正常光合活动,提高渗透物质可溶性糖、可溶性蛋白和Pro含量,维持植物细胞渗透势,同时诱导抗氧化酶SOD、POD及CAT活性增强,降低叶片的MDA含量,以清除过氧化物积累,降低膜质过氧化程度,从而增加盐碱胁迫下绿豆苗期根冠比和地上、地下部干重,缓解盐碱胁迫对绿豆植株造成的伤害,提高盐碱抗性。综合不同浓度Pro-Ca对绿豆的调控效果,初步确定100mg/L为缓解绿豆盐碱胁迫的最佳浓度。

参考文献

Li J, Pu L, Han M, et al.

Soil salinization research in China:advances and prospects

Journal of Geographical Sciences, 2014, 24(5):943-960.

DOI:10.1007/s11442-014-1130-2      URL     [本文引用: 1]

Oster J, Shainberg I, Abrol I.

Reclamation of salt-affected soils

Agricultural Drainage, 1999, 38(19):659-691.

[本文引用: 1]

Feng W Z, Chen Q, Ma C H.

Physico-chemical characteristics and microbial composition of saline-alkaline soils in Songnen Plain

Soils, 2007, 39(2):301-305.

[本文引用: 1]

Abd-Alla M, Vuong T, Harper J.

Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean

Crop Science, 1998, 38(1):72-77.

DOI:10.2135/cropsci1998.0011183X003800010013x      URL     [本文引用: 1]

Noble T. Development of the mungbean nested association mapping (NAM) resource. Brisbane: Queensland University of Technology, 2017.

[本文引用: 1]

Kumawat N, Kumar R, Sharma O.

Nutrient uptake and yield of mung bean [Vigna radiata (L.) Wilczek] as influenced by organic manures,PSB and phosphorus fertilization

Environment and Ecology, 2009, 27(4B):2002-2005.

[本文引用: 1]

Bhanu A, Singh M, Srivastava K.

Screening mungbean [Vigna radiata (L.) Wilczek] genotypes for mungbean yellow mosaic virus resistance under natural condition

Advances in Plants and Agriculture Research, 2017, 7(6):00276.

[本文引用: 1]

程须珍. 绿豆生产技术. 北京: 北京教育出版社, 2016.

[本文引用: 1]

林汝法, 柴岩, 廖琴. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002.

[本文引用: 1]

徐宁, 曲祥春, 王明海, .

绿豆主要株型性状的遗传

中国农业大学学报, 2019, 24(4):24-35.

[本文引用: 1]

Kamiya Y, Kobayashi M, Fujioka S, et al.

Effects of a plant growth regulator,prohexadione calcium (BX-112),on the elongation of rice shoots caused by exogenously applied gibberellins and helminthosporol,Part II1

Plant and Cell Physiology, 1991, 32(8):1205-1210.

[本文引用: 1]

Winkler V W.

Reduced risk concept for prohexadione-calcium,avegetative growth control plant growth regulator in apples

International Society for Horticultural Science (ISHS), 1997, 451:667-672.

[本文引用: 1]

Soleimani Aghdam M.

Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium

Journal of Food Science and Technology, 2013, 50(5):1029-33.

DOI:10.1007/s13197-013-0994-y      PMID:24426014      [本文引用: 1]

Storage of tomato (Solanum lycopersicum) as originally tropical fruit is limited by the risk of chilling injury (CI). To develop an effective technique to reduce CI, the effects of treatment with 0, 50 and 100 μM prohexadione-calcium (Pro-Ca) on CI, electrolyte leakage (EL), malondialdehyde (MDA) and proline contents, and activities of phospholipase D (PLD) and lipoxygenase (LOX), were investigated in tomato fruit stored at 1°C for 21 days. Treatment with Pro-Ca, without significant difference between two applied concentrations, significantly mitigated chilling injury. Also, Pro-Ca treatment maintained lower levels of EL and MDA content, higher level of proline content and inhibited the increases in PLD and LOX activities compared with the control fruit. These results suggest that Pro-Ca might mitigate CI by inhibiting PLD and LOX activities and by enhancing membrane integrity.

Rezapour Fard J, Kafi M, Naderi R.

The enhancement of drought stress tolerance of kentucky bluegrass by prohexadione-calcium treatment

Journal of Ornamental Plants, 2015, 5(4):197-204.

[本文引用: 1]

Bekheta M A, Abdelhamid M T, El-Morsi A A.

Physiological response of vicia faba to prohexadione-calcium under saline conditions

Planta Daninha, 2009, 27:769-779.

DOI:10.1590/S0100-83582009000400015      URL     [本文引用: 3]

葛莹, 李建东.

盐生植被在土壤积盐——脱盐过程中作用的初探

草业学报, 1990(1):70-76.

[本文引用: 1]

Benjamin J G, Nielsen D C, Vigil M F, et al.

Water deficit stress effects on corn (Zea mays L.) root: shoot ratio

Open Journal of Soil Science, 2014(4):151-160.

[本文引用: 1]

Liu Z, Zhang H, Yang X, et al.

Effects of soil salinity on growth,ion relations,and compatible solute accumulation of two sumac species:Rhus glabra and Rhus trilobata

Communications in Soil Science and Plant Analysis, 2013, 44(21):3187-3204.

DOI:10.1080/00103624.2013.832289      URL     [本文引用: 1]

Nasr S M H, Parsakhoo A, Naghavi H, et al.

Effect of salt stress on germination and seedling growth of Prosopis juliflora (Sw.)

New Forests, 2012, 43(1):45-55.

DOI:10.1007/s11056-011-9265-9      URL     [本文引用: 1]

Itai C, Benzioni A.

Water stress and hormonal response,water and plant life

Springer, 1976, 19:225-242.

[本文引用: 1]

Zuccarini P.

Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation

Plant Soil and Environment, 2007, 53(7):283-289.

DOI:10.17221/2209-PSE      URL     [本文引用: 1]

Ozbay N, Ergun N.

Prohexadione calcium on the growth and quality of eggplant seedlings

Pesquisa Agropecuária Brasileira, 2015, 50:932-938.

DOI:10.1590/S0100-204X2015001000009      URL     [本文引用: 1]

Hasegawa P M, Bressan R A, Zhu J K, et al.

Plant cellular and molecular responses to high salinity

Annual Review of Plant Biology, 2000, 51(1):463-499.

[本文引用: 1]

Sun J, He L, Li T.

Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress

PLoS ONE, 2019, 14(7):e0220340.

[本文引用: 1]

Vendruscolo E C G, Schuster I, Pileggi M, et al.

Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat

Journal of Plant Physiology, 2007, 164(10):1367-1376.

PMID:17604875      [本文引用: 1]

Water deficit is one of the main abiotic factors that affect spring wheat planted in subtropical regions. Accumulation of proline appears to be a promising approach to maintain the productivity of plants under stress condition. However, morphological alterations and growth reduction are observed in transgenic plants carrying genes coding for osmoprotectants controlled by constitutive promoters. We report here the effects of water deficit on wheat plants transformed with the Vigna aconitifolia Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) cDNA that encodes the key regulatory enzyme in proline biosynthesis, under the control of a stress-induced promoter complex-AIPC. Transgenic wheat plants submitted to 15 days of water shortage presented a distinct response. We have found that drought resulted in the accumulation of proline. The tolerance to water deficit observed in transgenic plants was mainly due to protection mechanisms against oxidative stress and not caused by osmotic adjustment.

Doganlar Z B, Demir K, Basak H, et al.

Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars

African Journal of Agricultural Research, 2010, 5(15):2056-2065.

[本文引用: 1]

Wang X, Geng S, Ri Y J, et al.

Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses

Scientia Horticulturae, 2011, 130(1):248-255.

DOI:10.1016/j.scienta.2011.07.006      URL     [本文引用: 1]

Aghdam M S.

Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium

Journal of Food Science and Technology, 2013, 50(5):1029-1033.

DOI:10.1007/s13197-013-0994-y      PMID:24426014      [本文引用: 1]

Storage of tomato (Solanum lycopersicum) as originally tropical fruit is limited by the risk of chilling injury (CI). To develop an effective technique to reduce CI, the effects of treatment with 0, 50 and 100 μM prohexadione-calcium (Pro-Ca) on CI, electrolyte leakage (EL), malondialdehyde (MDA) and proline contents, and activities of phospholipase D (PLD) and lipoxygenase (LOX), were investigated in tomato fruit stored at 1°C for 21 days. Treatment with Pro-Ca, without significant difference between two applied concentrations, significantly mitigated chilling injury. Also, Pro-Ca treatment maintained lower levels of EL and MDA content, higher level of proline content and inhibited the increases in PLD and LOX activities compared with the control fruit. These results suggest that Pro-Ca might mitigate CI by inhibiting PLD and LOX activities and by enhancing membrane integrity.

Parida A K, Das A B.

Salt tolerance and salinity effects on plants: a review

Ecotoxicology and Environmental Safety, 2005, 60(3):324-349.

PMID:15590011      [本文引用: 1]

Plants exposed to salt stress undergo changes in their environment. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins, and certain free radical scavenging enzymes that control ion and water flux and support scavenging of oxygen radicals or chaperones. The ability of plants to detoxify radicals under conditions of salt stress is probably the most critical requirement. Many salt-tolerant species accumulate methylated metabolites, which play crucial dual roles as osmoprotectants and as radical scavengers. Their synthesis is correlated with stress-induced enhancement of photorespiration. In this paper, plant responses to salinity stress are reviewed with emphasis on physiological, biochemical, and molecular mechanisms of salt tolerance. This review may help in interdisciplinary studies to assess the ecological significance of salt stress.

De Azevedo Neto A D, Prisco J T, Enéas-Filho J, et al.

Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes

Environmental and Experimental Botany, 2006, 56(1):87-94.

DOI:10.1016/j.envexpbot.2005.01.008      URL     [本文引用: 1]

McKay H, Mason W.

Physiological indicators of tolerance to cold storage in Sitka spruce and Douglas-fir seedlings

Canadian Journal of Forest Research, 1991, 21(6):890-901.

DOI:10.1139/x91-124      URL     [本文引用: 1]

Ramírez H, Herrera-Gámez B, Benavides-Mendoza A, et al.

Prohexadione calcium increases antioxidant capacity,lycopene content and enzymatic activity in fruits of tomato Floradade. Revista Chapingo

Serie Horticultura, 2010, 16(3):155-160.

[本文引用: 1]

/