Crops ›› 2023, Vol. 39 ›› Issue (3): 1-11.doi: 10.16035/j.issn.1001-7283.2023.03.001

    Next Articles

Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize

Wen Shenghui1(), Yang Junwei1(), Wang Yang2, Li Gongjian2, Weng Jianfeng2, Duan Canxing2, Jia Xin1, Wang Jianjun1   

  1. 1Institute of Maize Research, Shanxi Agricultural University/National Agricultural Experimental Station for Plant Protection in Xinzhou, Xinzhou 034000, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-11-12 Revised:2022-01-20 Online:2023-06-15 Published:2023-06-16

Abstract:

Diseases caused by fungi can infect leaf, stem, ear and other parts in all stages of corn growth and development, and led to a considerable decline in maize production and quality. Breeding and planting resistant maize hybrids is an important way to control the damage caused by diseases. With the development of modern molecular biology, genome-wide and multi-omics analysis technology provided a more reliable and convenient way for discovery of resistance genes and analysis of resistance mechanisms in maize. It is an effective way of using normal breeding and molecular breeding to improve disease resistance of existing germplasms. This article reviewed the latest research progress in disease resistance inheritance of common corn fungal diseases, gene mapping and its breeding utilization. Moreover, the discovery and mechanism analysis of new resistance genes, the utilization of broad-spectrum disease resistance genes and their gene editing technology in maize breeding were prospected, in order to promoting the breeding of excellent disease resistance maize varieties.

Key words: Maize fungal diseases, Resistance genes, Resistance mechanisms, Molecular breeding, Gene editing

Table 1

Inbred line resources of resistance genes of fungal diseases in maize"

病害名称
Disease name
抗病QTL/基因
Resistance QTL/gene
染色体
Chromosome (bin)
自交系
Inbred line
参考文献
Reference
圆斑病
Northern corn leaf spot
Hm1 1 B73 [10-11]
Hm2 9 - [12]
大斑病
Northern corn leaf blight
qNLB8.06 8 DK888 [15]
qNCLB5.04 5 K22(HR) [16]
qNCLB7.02 7 齐319(R) [17]
qNCLB-8-2 8 SKV50 [19]
Htn1 8 Pepitilla [20]
Ht2/Ht3 (ZmWAK-RLK1) 8 A619Ht2/A619Ht3 [21]
小斑病
Southern corn leaf blight
rhm1 - H95rhm [26]
ZmNBS42 10 B73(S) [27]
灰斑病Gray leaf spot qGLS_YZ2-1 2 Q1(HR) [29]
qRgls1.06 bin1.06 WGR(HR) [30]
qGLS1.02 1 齐319(R) [31]
qRgls1 (ZmWAK-RLK) 8 Y32(HR) [33-34]
qRgls2 (ZmPK) bin5.03-5.04 Y32(HR) [32,35]
南方锈病
Southern corn rust
Rpp3 10 P25(免疫) [46]
RppP25 bin10.01 P25(HR/几乎免疫) [35]
RppM 10 1484/Jing2416k(免疫) [47]
RppQ bin10.01 齐319 [42]
RppD bin10.01 W2D [44]
Rpp12 bin10.02 冀库12(R/MR) [38]
RppC 10 CML470(HR) [48]
RppS bin10.02 SCML205(免疫) [45]
RppCML496 bin10.00/10.01 CML496(HR) [49]
茎腐病Stalk rot RpiQI319-1/RpiQI319-2 bin1.03/bin10.02 齐319(HR) [54]
RpiX178-1/RpiX178-2 bin1.09/bin4.08 X178(HR) [55]
Rgsr8.1 8 S72365(HR) [58]
qRfg3 3 H127R(HR) [57]
qRfg1 (ZmCCT10) 10 1145(免疫) [59-60]
qRfg2 (ZmAuxRP1) 1 1145(免疫) [59?-61]
Rcg1 4 MP305 [62]
丝黑穗病Head smut qHS2.09 2 Mo17(HR) [69]
q2.09HRq5.03HR 2、5 齐319(HR) [70]
qHSR1 (ZmWAK) bin2.09 吉1037(HR)/Mo17(HR) [71?-73]
穗腐病Ear rot qRfer1/qRfer10/qRfer17 bin1.03/bin7.01-7.02/bin4.05-4.07 承351/丹598/吉V203(HR) [76]
ZmLOX3ZmLOX12 - B73 [81?-83]
[1] 国家统计局数据. [2021-2-01]. https://data.stats.gov.cn/easyquery.htm?cn=C01.
[2] 李晓晓. 玉米高产栽培技术及病虫害综合防治. 农民致富之友, 2017(21):58.
[3] 刘杰, 姜玉英, 曾娟, 等. 2015年我国玉米南方锈病重发特点和原因分析. 中国植保导刊, 2016, 36(5):44-47.
[4] 刘杰, 李天娇, 姜玉英, 等. 2020年我国玉米主要病虫害发生特点. 中国植保导刊, 2021, 41(8):30-35.
[5] 潘仁秀. 常见玉米病害的危害症状、发生规律及防治方法. 农业灾害研究, 2020, 10(1):11-12,14.
[6] 徐凌, 左为亮, 刘永杰, 等. 玉米主要病害抗性遗传研究进展. 中国农业科技导报, 2013, 15(3):18-29.
[7] 王晓鸣, 晋齐鸣, 石洁, 等. 玉米病虫害田间手册. 北京: 中国农业出版社, 2010.
[8] 卢灿华, 吴毅歆, 黄莲英, 等. 玉米圆斑病菌生理小种研究进展. 云南农业大学学报(自然科学), 2013, 28(3):411-415.
[9] 马秉元. 玉米对圆斑病菌生理小种3号的抗性遗传. 陕西农业科学, 1985(3):49.
[10] Johal G S, Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258(5084):985- 987.
doi: 10.1126/science.1359642 pmid: 1359642
[11] Sindhu A, Chintamanani S, Brandt A S, et al. A guardian of grasses: specific origin and conservation of a unique disease- resistance gene in the grass lineage. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5):1762-1767.
[12] 卢灿华, 吴毅歆, 黄莲英, 等. 玉米圆斑病菌毒素与玉米对应抗病基因研究进展. 云南农业大学学报(自然科学), 2013, 28(4):582-589.
[13] Weems J D, Bradley C A. Exserohilum turcicum race population distribution in the north central United States. Plant Disease, 2018, 102(2):292-299.
doi: 10.1094/PDIS-01-17-0128-RE
[14] 杨耿斌. 我国玉米大斑病生理小种动态与抗玉米大斑病材料筛选. 农业科技通讯, 2014(6):35-37.
[15] Chung C L, Jamann T, Longfellow J, et al. Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06. Theoretical and Applied Genetics, 2010, 121(2):205-227.
doi: 10.1007/s00122-010-1303-z
[16] Chen G, Wang X, Long S, et al. Mapping of QTL conferring resistance to northern corn leaf blight using high-density SNPs in maize. Molecular Breeding, 2015, 36(1):1-9.
doi: 10.1007/s11032-015-0425-z
[17] Wang J J, Xu Z N, Yang J, et al. qNCLB7.02,a novel QTL for resistance to northern corn leaf blight in maize. Molecular Breeding, 2018, 38(5):54.
doi: 10.1007/s11032-017-0770-1
[18] Xia H F, Gao W, Qu J, et al. Genetic mapping of northern corn leaf blight-resistant quantitative trait loci in maize. Medicine (Baltimore), 2020, 99(31):e21326.
doi: 10.1097/MD.0000000000021326
[19] Ranganatha H M, Lohithaswa H C, Pandravada A. Mapping and validation of major quantitative trait loci for resistance to northern corn leaf blight along with the determination of the relationship between resistances to multiple foliar pathogens of maize (Zea mays L.). Frontiers in Genetics, 2021, 11:548407.
doi: 10.3389/fgene.2020.548407
[20] Hurni S, Scheuermann D, Krattinger S G, et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (28):8780-8785.
[21] Yang P, Scheuermann D, Kessel B, et al. Alleles of a wall- associated kinase gene account for three of the major northern corn leaf blight resistance loci in maize. The Plant Journal, 2021, 106(2):526-535.
doi: 10.1111/tpj.v106.2
[22] 李聪聪, 王亚娇, 栗秋生, 等. 河北省玉米小斑病菌优势生理小种鉴定及ITS序列分析. 玉米科学, 2020, 28(1):172-176.
[23] 蒋锋, 刘鹏飞, 张金凤, 等. 玉米小斑病抗性的遗传分析与QTL定位. 2010植物免疫机制研究及其调控研讨会论文集, 2010:10.
[24] 蒋锋, 陈趣, 陈青春, 等. 甜玉米小斑病抗性主效QTL挖掘. 中国农业大学学报, 2021, 26(10):21-27.
[25] Balint-Kurti P J, Zwonitzer J C, Pè M E, et al. Identification of quantitative trait loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations. Phytopathology, 2008, 98(3):315-320.
doi: 10.1094/PHYTO-98-3-0315 pmid: 18944082
[26] Zhao Y Z, Lu X M, Liu C X, et al. Identification and fine mapping of rhm1 locus for resistance to southern corn leaf blight in maize. Journal of Integrative Plant Biology, 2012, 54(5):321- 329.
doi: 10.1111/jipb.2012.54.issue-5
[27] Xu Y J, Liu F, Zhu S W, et al. Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis. Plant Cell Reports, 2018, 37(11):1523-1532.
doi: 10.1007/s00299-018-2324-3
[28] Liu L, Zhang Y D, Li H Y, et al. QTL mapping for gray leaf spot resistance in a tropical maize population. Plant Disease, 2016, 100(2):304-312.
doi: 10.1094/PDIS-08-14-0825-RE pmid: 30694127
[29] Du L, Yu F, Zhang H, et al. Genetic mapping of quantitative trait loci and a major locus for resistance to grey leaf spot in maize. Theoretial and Applied Genetics, 2020, 133(8):2521-2533.
[30] Sun H, Zhai L H, Teng F, et al. qRgls1.06, a major QTL conferring resistance to gray leaf spot disease in maize. The Crop Journal, 2021, 9(2):342-350.
doi: 10.1016/j.cj.2020.08.001
[31] Lü X L, Song M X, Cheng Z X, et al. qGLS1.02, a novel major locus for resistance to gray leaf spot in maize. Molecular Breeding, 2020, 40(18):1-11.
doi: 10.1007/s11032-019-1080-6
[32] Xu L, Zhang Y, Shao S Q, et al. High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. BMC Plant Biology, 2014, 14:230.
doi: 10.1186/s12870-014-0230-6
[33] Zhang Y, Xu L, Fan X M, et al. QTL mapping of resistance to gray leaf spot in maize. Theoretical and Applied Genetics, 2012, 125(8):1797-808.
doi: 10.1007/s00122-012-1954-z pmid: 22903692
[34] 钟涛. 玉米灰斑病和茎腐病抗病基因克隆及抗病机理研究. 北京: 中国农业大学, 2019.
[35] 徐明良, 朱芒, 番兴明, 等. 一种培育抗灰斑病植物的方法:CN201910160206.3. 2019-2-03.
[36] Welgemoed T, Pierneef R, Sterck L, et al. De novo assembly of transcriptomes from a B 73 maize line introgressed with a QTL for resistance to gray leaf spot disease reveals a candidate allele of a lectin receptor-like linase. Frontiers in Plant Science, 2020, 11:191.
doi: 10.3389/fpls.2020.00191 pmid: 32231673
[37] Collins N, Drake J, Ayliffe M, et al. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. The Plant Cell, 1999, 11(7):1365-1376.
doi: 10.1105/tpc.11.7.1365
[38] 张小利. 玉米对大斑病和南方锈病抗病性研究. 北京: 中国农业科学院, 2013.
[39] Lu L, Xu Z N, Sun S L, et al. Discovery and fine mapping of qSCR6.01,a novel major QTL conferring southern rust resistance in maize. Plant Disease, 2020, 104(7):1918-1924.
doi: 10.1094/PDIS-01-20-0053-RE pmid: 32396052
[40] Deng C, Lv M, Li X Y, et al. Identification and fine mapping of qSCR4.01, a novel major QTL for resistance to Puccinia polysora in maize. Plant Disease, 2020, 104(7):1944-1948.
doi: 10.1094/PDIS-11-19-2474-RE pmid: 32384254
[41] 陈文娟, 路璐, 李万昌, 等. 玉米抗南方锈病基因的QTL定位. 植物遗传资源学报, 2019, 20(3):521-529.
doi: 10.13430/j.cnki.jpgr.20180831001
[42] Zhou C J, Chen C X, Cao P X, et al. Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Molecular Genetics and Genomics, 2007, 278(6):723- 728.
doi: 10.1007/s00438-007-0288-z
[43] Zhao P F, Zhang G B, Wu X J, et al. Fine mapping of RppP25, a southern rust resistance gene in maize. Journal of Integrative Plant Biology, 2013, 55(5):462-472.
doi: 10.1111/jipb.12027
[44] Zhang Y, Xu L, Zhang D F, et al. Mapping of southern corn rust-resistant genes in the W2D inbred line of maize (Zea mays L.). Molecular Breeding, 2010, 25(3):433-439.
doi: 10.1007/s11032-009-9342-3
[45] Wu X Y, Li N, Zhao P F, et al. Geographic and genetic identification of RppS,a novel locus conferring broad resistance to southern corn rust disease in China. Euphytica, 2015, 205(1):17-23.
doi: 10.1007/s10681-015-1376-5
[46] 刘章雄, 王守才, 戴景瑞, 等. 玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位. 遗传学报, 2003, 30(8):706-710.
[47] Wang S, Zhang R Y, Shi Z, et al. Identification and fine mapping of RppM, a southern corn rust resistance gene in maize. Frontiers in Plant Science, 2020, 11:1057.
doi: 10.3389/fpls.2020.01057
[48] 姚国旗, 单娟, 曹冰, 等. 玉米自交系CML470抗南方锈病基因的定位. 植物遗传资源学报, 2013, 14(3):518-522.
[49] Lv M, Deng C, Li X Y, et al. Identification and fine-mapping of RppCML496,a major QTL for resistance to Puccinia polysora in maize. The Plant Genome, 2021, 14(1):e20062.
[50] Martins L B, Rucker E, Thomason W, et al. Validation and characterization of maize multiple disease resistance QTL. G3:Genes,Genomes,Genetics, 2019, 9(9):2905-2912.
doi: 10.1534/g3.119.400195
[51] Yang Q, He Y J, Kabahuma M, et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 2017, 49(9):1364-1372.
doi: 10.1038/ng.3919 pmid: 28740263
[52] Wang H Z, Hou J B, Ye P, et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Molecular Plant, 2021, 14(11):1846-1863.
doi: 10.1016/j.molp.2021.07.008 pmid: 34271176
[53] Chung C L, Longfellow J M, Walsh E K, et al. Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize-Setosphaeria turcica pathosystem. BMC Plant Biology, 2010, 10:103.
doi: 10.1186/1471-2229-10-103
[54] Song F J, Xiao M G, Duan C X, et al. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319. Molecular Genetics and Genomics, 2015, 290(4):1543-1549.
doi: 10.1007/s00438-015-1019-5
[55] Duan C X, Song F J, Sun S L, et al. Characterization and molecular mapping of two novel genes resistant to Pythium stalk rot in maize. Phytopathology, 2019, 109(5):804-809.
doi: 10.1094/PHYTO-09-18-0329-R
[56] Pè M E, Gianfranceschi L, Taramino G, et al. Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Molecular & General Genetics, 1993, 241 (1/2):11-16.
[57] Ma C Y, Ma X N, Yao L S, et al. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Theoretical and Applied Genetics, 2017, 130(8):1723-1734.
doi: 10.1007/s00122-017-2921-5
[58] Chen Q, Song J, Du W P, et al. Identification, mapping, and molecular marker development for Rgsr8.1: a new quantitative trait locus conferring resistance to Gibberella stalk rot in maize (Zea mays L.). Frontiers in Plant Science, 2017, 8:1355.
doi: 10.3389/fpls.2017.01355
[59] Yang Q, Yin G M, Guo Y L, et al. A major QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics, 2010, 121(4):673-687.
doi: 10.1007/s00122-010-1339-0 pmid: 20401458
[60] Wang C, Yang Q, Wang W X, et al. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. The New Phytologist, 2017, 215 (4):1503-1515.
doi: 10.1111/nph.2017.215.issue-4
[61] Ye J R, Zhong T, Zhang D F, et al. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Molecular Plant, 2019, 12 (3):360-373.
doi: 10.1016/j.molp.2018.10.005
[62] Frey T J, Weldekidan T, Colbert T, et al. Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) G.W. Wils. using near-isogenic maize hybrids. Crop Science, 2011, 51(4):1551-1563.
doi: 10.2135/cropsci2010.10.0613
[63] 唐海涛. 玉米纹枯病抗性遗传分析. 成都:四川农业大学, 2004.
[64] 程伟东, 谭贤杰, 覃兰秋, 等. 玉米纹枯病抗性的主基因+多基因混合遗传分析. 玉米科学, 2009, 17(2):1-6.
[65] 赵茂俊, 张志明, 高世斌, 等. 玉米抗纹枯病QTL定位. 作物学报, 2006, 32(5):698-702.
[66] 林海建, 刘昌林, 沈亚欧, 等. 基于RIL群体的玉米纹枯病抗性QTL分析. 核农学报, 2013, 27(7):895-903.
doi: 10.11869/hnxb.2013.07.0895
[67] Li N, Lin B, Wang H, et al. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nature Genetics, 2019, 51(10):1540-1548.
doi: 10.1038/s41588-019-0503-y
[68] 刘玲玲, 韩苗苗, 王乾坤, 等. 基于吉846/掖3189重组近交系群体的玉米丝黑穗抗性的QTL分析. 玉米科学, 2016, 24(3):20-25.
[69] Weng J F, Liu X J, Wang Z H, et al. Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize. Phytopathology, 2012, 102(7):692-699.
doi: 10.1094/PHYTO-12-11-0330
[70] Li Y X, Wu X, Jaqueth J, et al. The identification of two head smut resistance-related QTL in maize by the joint approach of linkage mapping and association analysis. PLoS ONE, 2015, 10(12):e0145549.
doi: 10.1371/journal.pone.0145549
[71] Chen Y S, Chao Q, Tan G Q, et al. Identification and fine- mapping of a major QTL conferring resistance against head smut in maize. Theoretical and Applied Genetics, 2008, 117(8):1241- 1252.
doi: 10.1007/s00122-008-0858-4
[72] Li X H, Wang Z H, Gao S R, et al. Analysis of QTL for resistance to head smut (Sporisorium reiliana) in maize. Field Crops Research, 2007, 106(2):148-155.
doi: 10.1016/j.fcr.2007.11.008
[73] Zuo W L, Chao Q, Zhang N, et al. A maize wall-associated kinase confers quantitative resistance to head smut. Nature Genetics, 2015, 47(2):151-157.
doi: 10.1038/ng.3170 pmid: 25531751
[74] Li Z M, Ding J Q, Wang R X, et al. A new QTL for resistance to Fusarium ear rot in maize. Journal of Applied Genetics, 2011, 52(4):403-406.
doi: 10.1007/s13353-011-0054-0
[75] Ding J Q, Wang X M, Chander S, et al. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Molecular Breeding, 2008, 22:395-403.
doi: 10.1007/s11032-008-9184-4
[76] Wen J, Shen Y Q, Xing Y X, et al. QTL mapping of Fusarium ear rot resistance in maize. Plant Disease, 2021, 105(3):558-565.
doi: 10.1094/PDIS-02-20-0411-RE
[77] Guo Z F, Zou C, Liu X G, et al. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Disease, 2020, 104(6):1725-1735.
doi: 10.1094/PDIS-07-19-1552-RE pmid: 32320373
[78] Coan M M D, Senhorinho H J C, Pinto R B, et al. Genome-wide association study of resistance to ear rot by Fusarium verticillioides in a tropical field maize and popcorn core collection. Crop Science, 2018, 58:564-578.
doi: 10.2135/cropsci2017.05.0322
[79] Kebede A Z, Woldemariam T, Reid L M, et al. Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize. Theoretical and Applied Genetics, 2016, 129(1):17-29.
doi: 10.1007/s00122-015-2600-3 pmid: 26643764
[80] Butrón A, Santiago R, Cao A, et al. QTLs for resistance to Fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Disease, 2019, 103(5):897- 904.
doi: 10.1094/PDIS-09-18-1669-RE pmid: 30856072
[81] Gao X Q, Shim W B, Göbel C, et al. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Molecular Plant Microbe Interactions, 2007, 20(8):922-933.
doi: 10.1094/MPMI-20-8-0922
[82] Gao X Q, Brodhagen M, Isakeit T, et al. Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Molecular Plant Microbe Interactions, 2009, 22 (2):222-231.
doi: 10.1094/MPMI-22-2-0222
[83] Christensen S A, Nemchenko A, Park Y S, et al. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Molecular Plant Microbe Interactions, 2014, 27(11):1263-1276.
doi: 10.1094/MPMI-06-13-0184-R
[84] Tanaka K, Nguyen C T, Liang Y, et al. Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signaling & Behavior, 2013, 8(1):147-153.
[85] Shiu S H, Bleecker A B. Expansion of the receptor-like kinase/ pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology, 2003, 132(2):530-543.
doi: 10.1104/pp.103.021964
[86] Nürnberger T, Brunner F, Kemmerling B, et al. Innate immunity in plants and animals: striking similarities and obvious differences. Immunolgical Reviews, 2004, 198:249-266.
[87] Yuan M H, Ngou B P M, Ding P T, et al. PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion Plant Biology, 2021, 62:102030.
doi: 10.1016/j.pbi.2021.102030
[88] 刘永杰, 马传禹, 叶建荣. 玉米幼根接种禾谷镰刀菌后的转录组分析. 中国农业大学学报, 2016, 21(11):1-9.
[89] 杨银, 高志勇. 植物抗病机制的研究进展. 科教导刊(中旬刊), 2016,(26):138-139,186.
[90] Yang P, Praz C, Li B B, et al. Fungal resistance mediated by maize wall-associated kinase ZmWAK-RLK 1 correlates with reduced benzoxazinoid content. The New Phytologist, 2019, 221 (2):976-987.
doi: 10.1111/nph.2019.221.issue-2
[91] Ding Y Z, Weckwerth P R, Poretsky E, et al. Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nature Plants, 2020, 6(11):1375-1388.
doi: 10.1038/s41477-020-00787-9 pmid: 33106639
[92] Tang B, Liu C, Li Z, et al. Multilayer regulatory landscape during pattern-triggered immunity in rice. Plant Biotechnology Journal, 2021, 19(12):2629-2645.
doi: 10.1111/pbi.13688 pmid: 34437761
[93] Meyer J, Berger D K, Christensen S A, et al. RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biology, 2017, 17(1):197.
doi: 10.1186/s12870-017-1137-9
[94] Wang S X, Chen Z, Tian L, et al. Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. Plant Biotechnology Journal, 2019, 17(11):2153-2168.
doi: 10.1111/pbi.v17.11
[95] 余辉, 宋伟, 赵久然, 等. 分子标记辅助选择育成的玉米自交系京24单抗丝黑穗病和茎腐病改良材料性状分析. 分子植物育种, 2014, 12(1):56-61.
[96] Zhao X R, Tan G Q, Xing Y X, et al. Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Molecular Breeding, 2012, 30(2):1077-1088.
doi: 10.1007/s11032-011-9694-3
[97] 李莉, 邢跃先, 赵贤容, 等. 利用分子标记辅助选择技术提高玉米对丝黑穗病的抗性. 植物保护学报, 2012, 39(4):303-307.
[98] 邸宏, 宫程旭, 孙培元, 等. 分子标记辅助选择改良玉米自交系昌7-2的丝黑穗病抗性. 玉米科学, 2021, 29(1):20-25.
[99] 李少博, 宋伟, 王凤格, 等. 分子标记辅助玉米自交系京24抗南方锈病的改良. 分子植物育种, 2012, 10(4):440-445.
[100] 张斌. 分子标记辅助选择玉米兼抗粗缩病和南方锈病的育种材料. 济南:山东大学, 2012.
[101] 杨华, 杨俊品, 荣廷昭, 等. 利用phi116和umc1044标记选育抗纹枯病玉米品系. 分子植物育种, 2007, 5(3):347-352.
[102] Dong L, Qi X T, Zhu J J, et al. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnology Journal, 2019, 17(10):1853-1855.
doi: 10.1111/pbi.13144 pmid: 31050154
[103] Gao H R, Mutti J, Young JK, et al. Complex trait loci in maize enabled by CRISPR-Cas 9 mediated gene insertion. Frontiers in Plant Science, 2020, 11:535.
doi: 10.3389/fpls.2020.00535
[104] Wang Y P, Cheng X, Shan Q W, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9):947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[105] Tao H, Shi X T, He F, et al. Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes. Journal of Integrative Plant Biology, 2021, 63(9):1639-1648.
doi: 10.1111/jipb.13145
[106] Wei Z, Abdelrahman M, Gao Y, et al. Engineering broad- spectrum resistance to bacterial blight by CRISPR-Cas9- mediated precise homology directed repair in rice. Molecular Plant, 2021, 14(8):1215-1218.
doi: 10.1016/j.molp.2021.05.012
[107] Oliva R, Ji C, Atienza-Grande G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 2019, 37(11):1344-1350.
doi: 10.1038/s41587-019-0267-z pmid: 31659337
[1] Dou Yinggang, Zhen Zhen. Progress in the Technical Principle, Commercialization and Testing Research of Gene Edited Crops [J]. Crops, 2023, 39(2): 16-23.
[2] Luo Hanmin, Xiong Faqian, Qiu Lihang, Liu Jing, Duan Weixing, Gao Yijing, Qin Xiayan, Wu Jianming, Li Yangrui, Liu Junxian. Application Study of Molecular Markers Associated with Traits in Sugarcane Molecular Breeding [J]. Crops, 2022, 38(2): 35-43.
[3] Lin Ruxia, Guo Fengdan, Wang Xingjun, Xia Han, Hou Lei. Advances in Peanut Molecular Breeding [J]. Crops, 2021, 37(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!