Crops ›› 2024, Vol. 40 ›› Issue (1): 97-103.doi: 10.16035/j.issn.1001-7283.2024.01.013

;

Previous Articles     Next Articles

Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang

Wang Hongbo1,2(), Tang Maosong1,2, Li Guohui1,2, GaoYang 3(), Wang Xingpeng1,2()   

  1. 1College of Water Resource and Architecture Engineering, Tarim University, Alaer 843300, Xinjiang, China
    2Key Laboratory of Modern Agricultural Engineering, Tarim University, Alaer 843300, Xinjiang, China
    3Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, Henan, China
  • Received:2022-06-06 Revised:2022-07-12 Online:2024-02-15 Published:2024-02-20
  • Contact: GaoYang ,Wang Xingpeng E-mail:18083915561@163.com;gaoyang@caas.cn;13999068354@163.com

Abstract:

In order to elucidate the effects of irrigation on growth and yield formation of cotton with filmless drip irrigation, with a two-year field experiments from 2019 to 2020, the Logistic model was adopted to quantify the impactions of different irrigation treatments on dynamics of stem diameter, plant height, and leaf area index of drip-irrigated cotton without film mulching. The growth models were constructed for analyzing the regression relationship between the dynamics of cotton growth and yield and its components, and the cotton yield model also was constructed. The results indicated that the normalized root-mean-square errors (nRMSE) of the measured and simulated values of cotton stem diameter, plant height and leaf area index were all less than 20%, and synergy index (d) and coefficient of determination (R2) were higher than 0.91, suggesting that the Logistic model could accurately describe the growth dynamics of cotton stem diameter, plant height, and leaf area index under different drip irrigation treatments without film mulching. There were significant correlations between yield and maximum value of stem diameter, plant height, leaf area index and water consumption of drip-irrigated cotton without film mulching. The nRMSE, d and R2 of the predicted and measured values of the cotton yield model were 5.11%, 0.88 and 0.62, respectively, and the yield model had high prediction accuracy.

Key words: Filmless drip irrigation, Growth characteristics, Logistic model, Cotton yield

Fig.1

The dynamic change of cotton stem thickness in 2020 (a) and the verification result of the Logistic model of stem thickness in 2019 (b)"

Table 1

Fitting parameters of Logistic model of cotton stem diameter in 2020"

处理
Treatment
方程参数Equation parameter R2 特征参数Characteristic parameter
a1 b1 c1 V1 max T11 T21 T31
I1 8.28 100.56 0.08 1.00 0.17 57.63 41.17 74.10
I2 9.20 50.70 0.07 1.00 0.16 56.08 37.27 74.90
I3 9.63 62.54 0.07 1.00 0.17 59.08 40.27 77.90
平均Average 9.04 71.27 0.07 1.00 0.17 57.60 39.57 75.63

Fig.2

The dynamic change of cotton plant height in 2020 (a) and the verification result of the Logistic model of plant height in 2019 (b)"

Table 2

Fitting parameters of Logistic model of cotton plant height in 2020"

处理
Treatment
方程参数Equation parameter R2 特征参数Characteristic parameter
a2 b2 c2 V2max T12 T22 T32
I1 47.90 492.46 0.09 0.98 1.08 68.88 54.25 83.52
I2 68.25 719.17 0.09 0.97 1.54 73.09 58.46 87.72
I3 67.42 533.55 0.09 0.98 1.52 69.77 55.14 84.41
平均Average 61.19 581.73 0.09 0.98 1.38 70.58 55.95 85.22

Fig.3

The dynamic change of cotton leaf area index in 2020 (a) and the verification result of the Logistic model of leaf area index in 2019 (b)"

Table 3

Fitting parameters of Logistic model of cotton leaf area index in 2020"

处理
Treatment
方程参数Equation parameter R2 特征参数Characteristic parameter
a3 b3 c3 V3max T13 T23 T33
I1 1.87 147 150.31 0.16 0.98 0.07 74.37 66.14 82.60
I2 2.16 49 596.50 0.14 0.99 0.08 77.23 67.82 86.63
I3 2.50 135 216.15 0.16 0.98 0.10 73.84 65.61 82.07
平均Average 2.18 110 654.32 0.15 0.98 0.08 75.15 66.52 83.77

Table 4

Effects of different irrigation treatments on cotton yield and water use efficiency"

年份
Year
处理
Treatment
单株铃数
Boll numbers per plant
单铃质量
Boll mass (g)
籽棉产量
Seed cotton yield (kg/hm2)
耗水量
Water consumption (mm)
WUEI
(kg/m3)
WUEET
(kg/m3)
2019 I1 6.26b 5.06a 5278.80b 412.73c 1.47a 1.28a
I2 6.39b 5.16a 5489.40b 489.19b 1.22b 1.12b
I3 6.82a 5.28a 5999.49a 561.57a 1.11c 1.07b
2020 I1 4.73c 5.00a 4787.70c 386.06c 1.33a 1.24a
I2 5.01b 5.18a 5509.35b 467.07b 1.22b 1.18b
I3 5.73a 5.01a 6086.85a 565.03a 1.11c 1.08c

Table 5

Correlation analysis of cotton growth and yield under different irrigation treatments"

指标Index Dmax Hmax LAImax ET Y
Dmax 1.00
Hmax 0.81** 1.00
LAImax 0.79** 0.89** 1.00
ET 0.81** 0.83** 0.96** 1.00
Y 0.81** 0.88** 0.97** 0.97** 1.00

Fig.4

Results of parameter adjustment of cotton yield model"

[1] 喻树迅. 无膜棉对中国棉花产业转型升级的意. 农学学报, 2019, 9(3):1-5.
[2] 王洪博, 曹辉, 高阳, 等. 南疆无膜滴灌棉花灌溉制度对土壤水分和产量品质的影响. 灌溉排水学报, 2020, 39(5):26-34.
[3] 陈杨, 王磊, 白由路, 等. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系. 中国农业科学, 2021, 54(22):4761-4777.
doi: 10.3864/j.issn.0578-1752.2021.22.005
[4] 王乐, 吴杨焕, 李杰, 等. 棉花株高变化动态分析及模型研究. 新疆农业科学, 2017, 54(3):393-399,402.
[5] 孙仕军, 张琳琳, 陈志君, 等. AquaCrop作物模型应用研究进展. 中国农业科学, 2017, 50(17):3286-3299.
doi: 10.3864/j.issn.0578-1752.2017.17.004
[6] 赵引, 毛晓敏, 薄丽媛. 覆膜和灌水处理下土壤水分动态与玉米生长模拟研究. 农业机械学报, 2018, 49(9):195-204.
[7] 杨轩, 王自奎, 曹铨, 等. 陇东地区几种旱作作物产量对降水与气温变化的响应. 农业工程学报, 2016, 32(9):106-114.
[8] 李正鹏, 宋明丹, 冯浩. 水氮耦合下冬小麦LAI与株高的动态特征及其与产量的关系. 农业工程学报, 2017, 33(4):195-202.
[9] Young M W, Mullins E, Squire G R. Environmental risk assessment of blight-resistant potato: use of a crop model to quantify nitrogen cycling at scales of the field and cropping system. Environmental Science and Pollution Research, 2017, 24:21434-21444.
doi: 10.1007/s11356-017-9769-8
[10] 吴立峰, 张富仓, 王海东, 等. 新疆棉花亏缺灌溉叶面积指数模拟研究. 农业机械学报, 2015, 46(1):249-258.
[11] Setiyono T D, Weiss A, Specht J E, et al. Leaf area index simulation in soybean grown under near-optimal conditions. Field Crops Research, 2008, 108(1):82-92.
doi: 10.1016/j.fcr.2008.03.005
[12] Mahbod M, Sepaskhah A R, Zand-Parsa S. Estimation of yield and dry matter of winter wheat using logistic model under different irrigation water regimes and nitrogen application ratess. Archives of Agronomy and Soil Science, 2014, 60(12):1661-1676.
doi: 10.1080/03650340.2014.917169
[13] 赵姣, 郑志芳, 方艳茹, 等. 基于动态模拟模型分析冬小麦干物质积累特征对产量的影响. 作物学报, 2013, 39(2):300-308.
[14] 张继红, 刘云鹤, 王全九, 等. 典型作物Logistic模型生长参数空间分布及其地区水热相关性. 干旱地区农业研究, 2021, 39(5):199-209.
[15] 潘俊杰, 付秋萍, 阿布都卡依木·阿布力米提, 等. 蕾期和花铃期不同灌水下限对滴灌棉花产量的影响. 干旱地区农业研究, 2019, 37(5):27-32.
[16] 王洪博, 赵栗, 高阳, 等. 南疆无膜滴灌棉田灌溉模式及耗水规律研究. 中国农业科技导报, 2021, 23(10):153-160.
[17] 樊凯, 高阳, 王兴鹏, 等. 根据气象信息指导南疆棉花膜下滴灌的试验研究. 干旱地区农业研究, 2019, 37(3):83-90.
[18] 王健, 蔡焕杰, 陈凤, 等. 夏玉米田蒸发蒸腾量与棵间蒸发的试验研究. 水利学报, 2004(11):108-113.
[19] 王峰, 孙景生, 刘祖贵, 等. 不同灌溉制度对棉田盐分分布与脱盐效果的影响. 农业机械学报, 2013, 44(12):120-127.
[20] 蔡焕杰, 邵光成, 张振华. 不同水分处理对膜下滴灌棉花生理指标及产量的影响. 西北农林科技大学学报(自然科学版), 2002, 30(4):29-32.
[21] 常毅博, 李建明, 尚晓梅, 等. 水肥耦合驱动下的番茄植株形态模拟模型. 西北农林科技大学学报(自然科学版), 2015, 43(2):126-133,141.
[22] 张寄阳, 段爱旺, 孟兆江, 等. 不同水分状况下棉花茎直径变化规律研究. 农业工程学报, 2005(5):7-11.
[23] 崔永生, 王峰, 孙景生, 等. 南疆机采棉田灌溉制度对土壤水盐变化和棉花产量的影响. 应用生态学报, 2018, 29(11):3634-3642.
[24] 王军, 李久生, 关红杰. 北疆膜下滴灌棉花产量及水分生产率对灌水量响应的模拟. 农业工程学报, 2016, 32(3):62-68.
[25] 余美, 杨劲松, 刘梅先, 等. 膜下滴灌条件对棉花蒸散量影响的室内试验. 西北农林科技大学学报(自然科学版), 2011, 39(6):75-81.
[26] 陈先冠, 冯利平, 马雪晴, 等. 不同播期和灌水条件下冬小麦生物量变化与产量模拟. 农业机械学报, 2021, 52(10):349-357.
[27] 乔嘉, 朱金城, 赵姣, 等. 基于Logistic模型的玉米干物质积累过程对产量影响研究. 中国农业大学学报, 2011, 16(5):32-38.
[28] 王全九, 王康, 苏李君, 等. 灌溉施氮和种植密度对棉花叶面积指数与产量的影响. 农业机械学报, 2021, 52(12):300-312.
[1] Yang Mi, Wang Meijuan, Xu Haitao. Study on the Dynamic Development Difference of Husk of Maize Inbred Lines in Different Ecological Regions [J]. Crops, 2023, 39(5): 81-90.
[2] Dong Weixin, Zhang Yuechen. Effects of Water-Nitrogen Interaction on Physiological Parameters and Yield Formation of Different Wheat Varieties [J]. Crops, 2022, 38(3): 125-133.
[3] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[4] Chen Chengli, Wang Jing, Fu Quanshan, Hou Zhenwu, Jiang Weifeng, Li Liping, Guo Shuyang, Rao Chaoqi, Fu Yunpeng. Effects of Transplanting Dates and Mulching Methods on Dry Matter Accumulation and Economic Characteristics of Dark Sun-Cured Tobacco in Jiaohe [J]. Crops, 2021, 37(3): 126-132.
[5] Duan Bin,Fang Ling,He Shijie,Li Huilong,Peng Bo,Song Xiaohua,Hu Yang. Effects of the Temperature Change Based on Sowing Date on the Period from Seeding to Heading and the Filling and Ripening Stage of Japonica Rice in Southern Henan Province [J]. Crops, 2019, 35(3): 99-105.
[6] Zhang Xiangyu,Li Hai,Liang Haiyan,Zhang Zhi,Song Xiaoqiang,Zheng Minna. Effects of Different Row Spacing and Planting Density on the Growth Characteristics and Yield of Millet [J]. Crops, 2018, 34(5): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!