Crops ›› 2024, Vol. 40 ›› Issue (4): 121-129.doi: 10.16035/j.issn.1001-7283.2024.04.015

Previous Articles     Next Articles

Analysis of the Contribution Rate of Capsule Photosynthesis to the Traits Related to Grain Weight Formation in Sesamum indicum

Zhao Jun1(), Duan Xianqin2, Chen Yanni1, Wang Wenqian1, Zeng Yuanlinjun1, Wei Wenliang1(), Sun Jian3()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Wuhan Modern Agricultural Education Center, Wuhan 430040, Hubei, China
    3Institute of Crop Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
  • Received:2024-03-05 Revised:2024-05-29 Online:2024-08-15 Published:2024-08-14

Abstract:

We analyzed the effect and contribution rate of the capsule photosynthesis to the traits related to grain weight formation, i.e., fresh weight per capsule (FWC), fresh weight of wall per capsule (FWW), dry weight of wall per capsule (DWW), fresh weight of grain per capsule (FGW), and dry weight of grain per capsule (DGW). The findings demonstrated that, with the exception of FWW, all four traits did not alter substantially from the control group under the shade treatment. This suggested that the photosynthesis of leaves and stems could swiftly offset the effects of the capsule photosynthesis. The photosynthetic contribution rates of the capsule in L1 and S1 at 40 DAP was comparable to that of DWW and DGW, this indicated that the formation of seed weight diversity in L1 and S1 was related to the photosynthetic contribution of the capsule, and that the photosynthetic contribution of the leaves and stems to the formation of grain weight in sesame materials with different seed weight was rather close. Under the girdling treatment, all five traits were significantly different with the control, suggesting that the photosynthesis of leaves and stems could not be fully compensated by the capsule after girdling treatment, which had a significant impact on the development of capsules and the formation of grain weight. Furthermore, the photosynthetic contribution rates of capsules to FWC, DWW and DGW increased accompanying with the development of the capsules, implying that capsule photosynthesis may have a compensatory enhancing effect. Especially, the capsule photosynthesis of L1 at 40 DAP contributed to DWW and DGW significantly more than those of S1, which further confirmed that the grain weight formation of L1 may be related to the higher photosynthetic contribution of capsules.

Key words: Sesame (Sesamum indicum), Capsule, Photosynthetic contribution rate, Grain weight formation

Fig.1

Girdling and shading treatments of sesame capsules"

Fig.2

Effects of capsule photosynthesis on fresh weight per capsule of L1 and S1 under girdling and shading treatments “*”and“**”represent the significant (P < 0.05) and extremely significant differences (P < 0.01) under girdling and shading treatments compared with CK at the same stage, respectively, the same below."

Table 1

Contribution rates of capsule photosynthesis to fresh weight per capsule in sesame"

品种
Variety
处理
Treatment
10 DAP 20 DAP 30 DAP 40 DAP
每蒴鲜重
Fresh weight
per capsule (g)
贡献率
Contribution
rate (%)
每蒴鲜重
Fresh weight
per capsule (g)
贡献率
Contribution
rate (%)
每蒴鲜重
Fresh weight
per capsule (g)
贡献率
Contribution
rate (%)
每蒴鲜重
Fresh weight
per capsule (g)
贡献率
Contribution
rate (%)
L1 对照 0.923±0.013 100 1.034±0.016 100 1.121±0.008 100 1.213±0.003 100
遮阴 0.833±0.006 18 0.962±0.012 12 0.975±0.002* 21 1.065±0.001* 19
环割 0.574±0.067** 30 0.773±0.077** 57 0.895±0.032* 67 0.987±0.036* 71
S1 对照 0.744±0.005 100 0.916±0.011 100 0.955±0.033 100 0.975±0.009 100
遮阴 0.656±0.034 21 0.783±0.003 23 0.815±0.003 22 0.857±0.034* 18
环割 0.426±0.038** 24 0.617±0.035** 49 0.717±0.003* 62 0.771±0.048* 69

Fig.3

Effects of capsule photosynthesis on fresh and dry weight of wall per capsule of L1 and S1 under girdling and shading treatments"

Table 2

Contribution rates of capsule photosynthesis to fresh weight per capsule wall in sesame"

品种
Variety
处理
Treatment
10 DAP 20 DAP 30 DAP 40 DAP
每蒴果皮鲜重
Fresh weight
of wall per
capsule (g)
贡献率
Contribution
rate (%)
每蒴果皮鲜重
Fresh weight
of wall per
capsule (g)
贡献率
Contribution
rate (%)
每蒴果皮鲜重
Fresh weight
of wall per
capsule (g)
贡献率
Contribution
rate (%)
每蒴果皮鲜重
Fresh weight
of wall per
capsule (g)
贡献率
Contribution
rate (%)
L1 对照 0.676±0.055 100 0.738±0.007 100 0.776±0.001 100 0.847±0.029 100
遮阴 0.545±0.020* 34 0.717±0.001 5 0.736±0.003 8 0.745±0.010* 14
环割 0.360±0.005** 17 0.509±0.027** 48 0.687±0.006* 78 0.731±0.009* 79
S1 对照 0.573±0.027 100 0.649±0.010 100 0.718±0.013 100 0.671±0.030 100
遮阴 0.564±0.036 3 0.626±0.016 6 0.676±0.028 9 0.627±0.008 10
环割 0.332±0.032** 25 0.445±0.062** 49 0.503±0.027** 54 0.485±0.012** 56

Table 3

Contribution rates of capsule photosynthesis to dry weight of wall per capsule in sesame"

品种
Variety
处理
Treatment
10 DAP 20 DAP 30 DAP 40 DAP
每蒴果皮干重
Dry weight
of wall per
capsule (g)
贡献率
Contribution
rate (%)
每蒴果皮干重
Dry weight
of wall per
capsule (g)
贡献率
Contribution
rate (%)
每蒴果皮干重
Dry weight
of wall per
capsule (g)
贡献率
Contribution
rate (%)
每蒴果皮干重
Dry weight
of wall per
capsule (g)
贡献率
Contribution
rate (%)
L1 对照 0.138±0.002 100 0.163±0.002 100 0.174±0.003 100 0.187±0.002 100
遮阴 0.128±0.001 13 0.150±0.001 13 0.161±0.001 12 0.173±0.001 11
环割 0.063±0.002** 4 0.074±0.004** 13 0.149±0.005** 78 0.168±0.004* 85
S1 对照 0.110±0.003 100 0.138±0.002 100 0.149±0.008 100 0.147±0.002 100
遮阴 0.088±0.015 15 0.128±0.001 11 0.134±0.007 15 0.134±0.004 13
环割 0.051±0.001** 5 0.083±0.029** 39 0.109±0.004** 60 0.115±0.004** 68

Fig.4

Effects of capsule photosynthesis on fresh and dry weight of grain per capsule of L1 and S1 under girdling and shading treatments"

Table 4

Contribution rates of capsule photosynthesis to fresh weight of grain per capsule in sesame"

品种
Variety
处理
Treatment
10 DAP 20 DAP 30 DAP 40 DAP
每蒴籽粒鲜重
Fresh weight
of grain per
capsule (g)
贡献率
Contribution
rate (%)
每蒴籽粒鲜重
Fresh weight
of grain per
capsule (g)
贡献率
Contribution
rate (%)
每蒴籽粒鲜重
Fresh weight
of grain per
capsule (g)
贡献率
Contribution
rate (%)
每蒴籽粒鲜重
Fresh weight
of grain per
capsule (g)
贡献率
Contribution
rate (%)
L1 对照 0.236±0.004 100 0.254±0.004 100 0.283±0.007 100 0.310±0.008 100
遮阴 0.198±0.009* 29 0.232±0.006 15 0.266±0.002 10 0.289±0.011 15
环割 0.185±0.002* 62 0.230±0.006 84 0.259±0.013 87 0.275±0.004 83
S1 对照 0.212±0.012 100 0.277±0.009 100 0.280±0.009 100 0.206±0.002 100
遮阴 0.196±0.002 15 0.254±0.002 12 0.262±0.001 9 0.182± 0.001 11
环割 0.093±0.006** 9 0.122±0.015** 18 0.137±0.014** 25 0.111±0.003** 19

Table 5

Contribution rates of capsule photosynthesis to dry weight of grain per capsule in sesame"

品种
Variety
处理
Treatment
10 DAP 20 DAP 30 DAP 40 DAP
每蒴籽粒干重
Dry weight
of grain per
capsule (g)
贡献率
Contribution
rate (%)
每蒴籽粒干重
Dry weight
of grain per
capsule (g)
贡献率
Contribution
rate (%)
每蒴籽粒干重
Dry weight
of grain per
capsule (g)
贡献率
Contribution
rate (%)
每蒴籽粒干重
Dry weight
of grain per
capsule (g)
贡献率
Contribution
rate (%)
L1 对照 0.043±0.001 100 0.086±0.003 100 0.146±0.005 100 0.171±0.006 100
遮阴 0.037±0.002 24 0.074±0.004 18 0.127±0.004 20 0.141±0.003 20
环割 0.024±0.004** 19 0.045±0.002** 39 0.103±0.001* 66 0.122±0.003** 68
S1 对照 0.041±0.003 100 0.103±0.003 100 0.133±0.003 100 0.138±0.003 100
遮阴 0.036±0.002 17 0.086±0.003 20 0.107±0.006 22 0.111±0.001 22
环割 0.018±0.004** 7 0.058±0.018** 48 0.073±0.003** 49 0.079±0.001** 52

Fig.5

Effects of capsule photosynthesis on 1000-grain weight of sesame under girdling and shading treatments The different lowercase letters indicate the significant difference at P < 0.05 level."

[1] Burstin T J. Reserve accumulation in legume grains. Comptes Rendus Biologies, 2008, 331(10):755-762.
[2] Aschan G, Pfanz H. Non-foliar photosynthesisa strategy of additional carbon acquisition. Flora, 2003, 198(2):81-97.
[3] Mogensen V O, Jensen C R, Mortensen G, et al. Pod photosynthesis and drought adaptation of field grown rape (Brassica napus L.). European Journal of Agronomy, 1997, 6(3/ 4):295-307.
[4] Hua W, Li R J, Zhan G M, et al. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. The Plant Journal, 2011, 69(3):432-444.
[5] 杨阳, 苍晶, 王学东, 等. 大豆豆荚光合特性及其对产量的贡献. 东北农业大学学报, 2008, 39(12):51-56.
[6] Crookston R K, O'Toole J, Ozbun J L. Characterization of the bean pod as a photosynthetic organ. Crop Science, 1974, 14(5):708-712.
[7] Wang H, Hou L Y, Wang M Y, et al. Contribution of the pod wall to seed grain filling in alfalfa. Scientific Reports, 2016, 6:26586.
doi: 10.1038/srep26586 pmid: 27210048
[8] Zhang W X, Mao P S, Li Y, et al. Assessing of the contributions of pod photosynthesis to carbon acquisition of seed in alfalfa (Medicago sativa L.) open. Scientific Reports, 2019, 7:420-426.
[9] Imaizumi N, Usuda H, Nakamoto H, et al. Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant & Cell Physiology, 1990, 31(6):835-844.
[10] Zhou B W, Serret M D, Elazab A, et al. Wheat ear carbon assimilation and nitrogen remobilization contribute significantly to grain yield. Journal of Integrative Plant Biology, 2016, 58 (11):914-926.
doi: 10.1111/jipb.12478
[11] Bort J, Brown R H, Araus J L. Refixation of respiratory CO2 in the ears of C3 cereals. Journal of Experimental Botany, 1996, 47 (10):1567-1575.
[12] Sui X L, Shan N, Hu L P, et al. The complex character of photosynthesis in cucumber fruit. Journal of Experimental Botany, 2017, 68(7):1625-1637.
doi: 10.1093/jxb/erx034 pmid: 28369547
[13] Piechulla B, Gruissem W. Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. The EMBO Journal, 1987, 6(12):3593-3599.
[14] Hu Y Y, Zhang Y L, Luo H H, et al. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage. Planta, 2011, 235(2):325-336.
[15] Wullschleger S D, Oosterhuis D M. Photosynthesis, transpiration, and water-use efficiency of cotton leaves and fruit. Photosynthetica, 1991, 25:505-515.
[16] Zhang Y, Mulpuri S, Liu A Z, et al. Photosynthetic capacity of the capsule wall and its contribution to carbon fixation and seed yield in castor (Ricinus communis L.). Acta Physiologiae Plantarum, 2016, 38(10):1-12.
[17] Kong L G, Wang F H, Feng B, et al. The structural and photosynthetic characteristics of the exposed peduncle of wheat (Triticum aestivum L.): an important photosynthate source for grain-filling. BMC Plant Biology, 2010, 10(1):141.
[18] Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear. Photosynthetica, 2001, 39(2):239-244.
[19] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Research, 2000, 67(1):35-49.
[20] Dubousset L, Etienne P, Avice J C. Is the remobilization of S and N reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages?. Journal of Experimental Botany, 2010, 61(15):4313-4324.
doi: 10.1093/jxb/erq233 pmid: 20693411
[21] Namiki M. Nutraceutical functions of sesame: a review. Critical Reviews in Food Science and Nutrition, 2007, 47(7):651-673.
pmid: 17943496
[22] Day J S. Development and maturation of sesame seeds and capsules. Field Crops Research, 2000, 67(1):1-9.
[23] 陈艳妮, 徐鸿儒, 赵云燕, 等. 芝麻蒴果发育过程中蒴果皮的光合作用及籽粒充实的变化研究. 植物生理学报, 2022, 58 (4):723-732.
[24] Duffus C M, Cochrane M P. Formation of the barley grain- morphology, physiology, and biochemistry//MacGregor A W,Bhatty R S (eds) Barley: Chemistry and Technology. American Association of Cereal Chemists,St. Paul, 1993:31-72.
[25] Xu H L, Gauthier L, Gosselin Y D, et al. Photosynthesis in leaves, fruits, stem and petioles of greenhouse-grown tomato plants. Photosynthetica, 1997, 33(1):113-123.
[26] Luo M, Dennis E S, Berger F, et al. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene,are regulators of seed size in Arabidopsis. Proceedings of the National Academy of Sciences of the United States, 2005, 102 (48):17531-17536.
[27] Martin A, Lee J, Kichey T, et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell, 2006, 18(11):3252-3274.
[28] Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E 3 ubiquitin ligase. Nature Genetics, 2007, 39(5):623-630.
[29] Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40(8):1023-1028.
doi: 10.1038/ng.169 pmid: 18604208
[30] Takano-Kai N, Jiang H, Kubo T, et al. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182 (4):1323-1334.
doi: 10.1534/genetics.109.103002 pmid: 19506305
[31] Wu Y H, Zhang B, Cao W H, et al. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. The Plant Cell, 2009, 21(5):1473-1494.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!