Crops ›› 2020, Vol. 36 ›› Issue (1): 61-66.doi: 10.16035/j.issn.1001-7283.2020.01.011

Previous Articles     Next Articles

Study on the Method of Determining Digestible Protein Content and Screening of Rice Resources

Chen Tingmu,Sun Zhiguang,Xing Yungao,Fang Zhaowei,Wang Baoxiang,Liu Yan,Xu Dayong()   

  1. Lianyungang Academy of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Lianyungang 222006, Jiangsu, China
  • Received:2019-06-05 Revised:2019-08-02 Online:2020-02-15 Published:2020-02-23
  • Contact: Dayong Xu E-mail:xudayong3030@sina.com

Abstract:

Rice is the main food crop and an important source of protein. The proteins of rice seed include non-digestible gliadin and digestible glutenin, albumin and globulin. A feasible method for determination of digestible protein content in rice was studied in 804 genotypes imported from International Rice Research Institute. Satisfactory results were obtained by adding 0.4% NaOH in 60% ethanol as the extraction solvent and using 300W ultrasound to extract digestible protein three times, simultaneously the average digestible protein of resources was measured. The average digestible protein content of 804 materials was 7.80%. It provided an effective technical means for the determination of digestible protein content in rice and screened a number of rice breeding materials with high and low digestible protein content.

Key words: Rice protein, Digestible protein, Comassie brilliant blue G250, Determination method, Rice resource

Fig.1

Statistics of geographical sources of imported rice resources of International Rice Research Institute"

Table 1

Horizontal of factors in orthogonal test"

碱浓度(%)
Alkali
concentration
乙醇浓度(%)
Ethanol
concentration
固液比
Solid liquid
ratio
超声时间(min)
Ultrasonic time
0.25 30 1g:10mL 30
0.30 40 1g:15mL 40
0.35 50 1g:20mL 50
0.40 60 1g:25mL 60

Table 2

Orthogonal test scheme"

处理
Treatment
碱浓度(%)
Alkali concentration
乙醇浓度(%)
Ethanol concentration
固液比
Solid liquid ratio
超声时间(min)
Ultrasonic time
T1 0.25 30 1g:10mL 30
T2 0.25 40 1g:15mL 40
T3 0.25 50 1g:20mL 50
T4 0.25 60 1g:25mL 60
T5 0.30 30 1g:20mL 60
T6 0.30 40 1g:25mL 50
T7 0.30 50 1g:10mL 40
T8 0.30 60 1g:15mL 30
T9 0.35 30 1g:25mL 40
T10 0.35 40 1g:20mL 30
T11 0.35 50 1g:15mL 60
T12 0.35 60 1g:10mL 50
T13 0.40 30 1g:15mL 50
T14 0.40 40 1g:10mL 60
T15 0.40 50 1g:25mL 30
T16 0.40 60 1g:20mL 40
T17 (CK) 0.30 70 1g:15mL 30

Fig.2

BSA G250 dyeing working curve"

Table 3

Orthogonal experiments results of protein extraction %"

处理
Treatment
重复Repeat 平均
Average
T1 2.7381 2.9181 2.6652 2.7738g
T2 3.8575 4.1175 4.1009 4.0253cd
T3 4.5201 4.0480 4.5995 4.3892abc
T4 4.1211 4.0053 4.3273 4.1512bcd
T5 1.9880 1.9904 1.7808 1.9197h
T6 3.8264 3.8296 4.1371 3.931de
T7 4.3076 4.0519 4.6434 4.3343bcd
T8 3.2721 3.7520 3.7740 3.5994ef
T9 1.7408 1.5948 1.8809 1.7388h
T10 3.2347 3.2947 3.6159 3.3818f
T11 3.9750 4.6421 4.8588 4.492ab
T12 4.3465 4.4786 4.5657 4.4636ab
T13 1.9913 1.9704 1.8209 1.9275h
T14 4.6533 4.0477 4.0604 4.2538bcd
T15 4.5498 4.1563 4.1454 4.2838bcd
T16 4.7898 4.6145 4.9990 4.8011a
T17(CK) 2.9284 2.7422 2.5562 2.7423g

Table 4

Variance analysis of orthogonal experiments for protein extraction"

变异来源
Source of variation
变异平方和
Sum of squares of variation
变异自由度
Variation degree of freedom
变异均方
Variance mean square
F P
碱浓度Alkali concentration 1.4469 3 0.4823 4.2284 0.0119
乙醇浓度Ethanol concentration 40.6212 3 13.5404 118.7114 0.0000
固液比Solid liquid ratio 1.5499 3 0.5166 4.5294 0.0087
超声时间Ultrasonic time 0.3472 3 0.1157 1.0147 0.3979
误差Error 3.9921 35 0.1141

Table 5

Multiple comparisons of orthogonal experiments for protein extraction"

碱浓度(%)
Alkali concentration
蛋白质含量(%)
Protein content
乙醇浓度(%)
Ethanol concentration
蛋白质含量(%)
Protein content
固液比
Solid liquid ratio
蛋白质含量(%)
Protein content
0.25 3.8349aA 50 4.3748aA 1g:15mL 3.9563aA
0.40 3.8166aA 60 4.2538aA 1g:15mL 3.6229abA
0.35 3.5191abA 40 3.8980bA 1g:15mL 3.5262bA
0.30 3.4461bA 30 2.0900cB 1g:15mL 3.5110bA

Table 6

Re-optimization of orthogonal experiments for protein extraction"

试验号
Test number
碱浓度(%)
Alkali concentration
乙醇浓度(%)
Ethanol concentration
超声时间(min)
Ultrasonic time
固液比
Solid liquid ratio
蛋白质含量(%)
Protein content
T20 0.40 60 40 1g:15mL 4.5953a
T16 0.40 60 40 1g:20mL 4.5260ab
T18 0.40 55 40 1g:15mL 4.4167ab
T19 0.40 50 40 1g:15mL 4.3001b

Fig.3

Digestible protein content and frequency of rice groups with different digestible protein contents Different capital and lowercase letters indicate extremely significant and significant difference at the 0.01 and 0.05 level, respectively"

[1] 卢良恕, 许世卫 . 2000 年中国食物需求与对策. 中国食物与营养, 1996(2):20-23.
[2] 田旭静, 段鹏慧, 陈文超 , 等. Osborne分级法提取藜麦糠清蛋白及功能性质研究. 食品工业科技, 2017,38(12):264-269,276.
[3] 瞿瑗, 余国贤, 黎杉珊 , 等. Osborne法分级提取青花椒籽蛋白质及其理化性质研究. 核农学报, 2018,32(12):2373-2379.
[4] 孙媛 . 改良Osborne法分级分离四种小麦蛋白的研究. 广州:华南理工大学, 2015.
[5] 焦爱霞, 杨昌仁, 曹桂兰 , 等. 水稻蛋白质含量的遗传研究进展. 中国农业科学,2008(1):1-8.
[6] 周丽慧, 刘巧泉, 张昌泉 , 等. 水稻种子蛋白质含量及组分在品种间的变异与分布. 作物学报, 2009,35(5):884-891.
[7] 房列涛, 兰雪, 沈秀军 , 等. 双波长600nm/460nm分光光度法测定蛋白质含量研究. 生物学杂志, 2015,32(4):94-97.
[8] 陈庭木, 徐大勇, 秦德荣 , 等. 偏相关与通径分析的EXCEL VBA程序设计. 农业网络信息,2007(3):101-103.
[9] 国家药典委员会. 中华人民共和国药典. 北京: 中国医药科技出版社, 2015.
[10] 曲红岩, 张欣, 施利利 , 等. 水稻食味品质主要影响因子分析. 江苏农业科学, 2017,45(6):172-175.
[11] 石吕 . 水稻精米蛋白质含量与稻米品质变化的关系. 扬州:扬州大学, 2017.
[12] 李晓光, 金正勋, 刘海英 , 等. 水稻杂种后代籽粒直链淀粉和蛋白质含量选择对产量和品质性状的影响. 东北农业大学学报, 2011,42(4):13-17.
[13] 钱春荣, 冯延江, 杨静 , 等. 水稻籽粒蛋白质含量选择对杂种早代蒸煮食味品质的影响. 中国水稻科学,2007(3):323-326.
[14] 楠谷彰人 . 中日水稻品种的食味比较. 北方水稻,2007(5):72-77.
[15] 徐大勇 . N肥对水稻籽粒蛋白质含量、组成成分和氨基酸含量影响的研究. 中国青年农业科学学术年报:中国农学会, 2004: 7.
[16] 王晓波, 王录, 赵颖君 , 等. N、P、K三要素对水稻的蛋白质效应分析. 吉林农业大学学报,2001(3):5-8.
[17] 刘保国, 任昌福 . 水稻籽粒蛋白质积累特性的研究. 西南农业大学学报,1992(1):70-74.
[18] 陈能, 罗玉坤, 谢黎虹 , 等. 我国水稻品种的蛋白质含量及与米质的相关性研究. 作物学报,2006(8):1193-1196.
[19] 朴钟泽, 韩龙植, 高熙宗 . 水稻胚大小对蛋白质含量的影响. 上海农业学报,2002(S1):9-13.
[20] Heda G D, Reddy G M, 曾世雄 . 水稻蛋白质含量与产量水平的研究. 广东农业科学,1986(1):46-47.
[21] 黎用朝, 闵军, 刘三雄 . 湖南高蛋白水稻品种选育的主要进展与思考. 中国稻米,2009(5):22-25.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] . [J]. Crops, 1994, 10(1): 17 -19 .
[4] . [J]. Crops, 1986, 2(2): 10 -11 .
[5] . [J]. Crops, 1991, 7(2): 13 .
[6] . [J]. Crops, 1991, 7(3): 32 -33 .
[7] . [J]. Crops, 1994, 10(2): 13 -15 .
[8] . [J]. Crops, 1989, 5(2): 20 -21 .
[9] . [J]. Crops, 1986, 2(3): 33 .
[10] . [J]. Crops, 2005, 21(4): 33 -35 .