Crops ›› 2020, Vol. 36 ›› Issue (1): 67-75.doi: 10.16035/j.issn.1001-7283.2020.01.012

Previous Articles     Next Articles

Effects of Saline Stress on Leaf Photosynthesis Characteristics and Grain Yield of Two Rice Cultivars (Lines)

Jing Peipei1,2,Ren Hongru1,Yang Hongjian2,Dai Qigen1()   

  1. 1Yangzhou University/Innovation Center of Rice Cultivation Technology in Yangtze River Valley/Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
    2Agricultural Technology Extension Station of Jiangsu Province, Nanjing 210036, Jiangsu, China
  • Received:2019-07-23 Revised:2019-12-06 Online:2020-02-15 Published:2020-02-23
  • Contact: Qigen Dai E-mail:qgdai@yzu.edu.cn

Abstract:

This study was aimed at investigating the effects of saline stress on photosynthesis, chlorophyll fluorescence, and yield. Our study could provide useful information for breeding salt-tolerant varieties as well as effective development and utilization of saline-alkali land. An experiment was conducted on two rice cultivars (lines) Wuyunjing 30 (saline sensitive) and Zhendao 23309 (saline tolerant) to study the effects of different saline stress (0%, 0.07%, 0.14%, 0.21%, 0.28%, 0.35%) on grain yield, photosynthetic parameters, and chlorophyll fluorescence variation at heading stage. The results showed that the yield of both cultivars (lines) was reduced gradually with the increase of salt content, while the yield of Wuyunjing 30 was decreased more compared to Zhendao 23309, while there was no significant difference in 1000-grain weight between salt treatments. Under low salt concentration stress (0.07%), net photosynthetic rate (Pn), SPAD, water use efficiency (WUE), apparent mesophyll conductance (AMC), Fv/Fo, Fv/Fm, ΦPSⅡ, qp and qN were increased significantly compared with the control. When the salt concentration was 0.14%, all parameters of Zhendao 23309 were increased except qN, showing salt resistance of Zhendao 23309. Both genotypes showed significant decrease in photosynthesis when the salt concentration was higher than 0.14%. Therefore, the effects of saline stress on photosynthetic characteristics and yield of rice was not only related to salt concentration, but also to genotype. Higher chlorophyll content in rice leaves, slower transition from stomatal to non-stomatal restriction, higher moisture utilization rate, greater heat dissipation of PSⅡ and photoprotection capacity are the characterisics responsible for strong salt tolerance.

Key words: Rice, Saline stress, Photosynthesis, Chlorophyll fluorescence, Yield

Fig.1

Effects of saline stress on SPAD value of rice leaves at heading stage Different lowercase letters indicate significant difference (P<0.05). The same below"

Fig. 2

Effects of saline stress on photosynthetic characteristics of rice leaves at heading stage"

Fig.3

Effects of saline stress on Fv/Fo and Fv/Fm of rice leaves at heading stage"

Fig.4

Effects of saline stress on ΦPSⅡ, qp and qN of rice leaves at heading stage"

Table 1

Effects of saline stress on grain yield and its components of rice"

基因型
Genotype
盐浓度(%)
Salt concentration
穗数
(×104/hm2)
Spike number
穗粒数Spikelets
per panicle
结实率(%)
Seed-setting rate
千粒重(g)
1000-grain weight
2017年In 2017 2018年In 2018
产量(t/hm2)
Yield
减产率(%)
Yield decreased
产量(t/hm2)
Yield
减产率(%)
Yield decreased
武运粳30 0 315.7b 140.3a 91.1a 24.8a 9.88a - 10.12a -
Wuyunjing 30 0.07 300.7ab 119.3b 87.3b 24.5a 7.41c 24.98 7.89cd 22.04
0.14 290.8c 104.5cd 85.9b 24.5a 6.27e 36.57 6.52e 35.57
0.21 243.9d 102.9cd 86.3b 24.3a 5.13g 48.06 5.36fg 47.04
0.28 228.4de 89.2e 85.9b 24.3a 4.22i 57.26 4.25h 58.00
0.35 195.7f 88.1e 85.2b 24.1a 3.57j 63.86 3.49i 65.51
振稻23309 0 313.1ab 120.3b 88.3ab 24.8a 8.06b - 8.42b -
Zhendao 23309 0.07 329.9a 113.9bc 86.6b 24.5a 7.84b 2.73 8.21bc 2.49
0.14 301.4ab 113.2bc 87.0b 24.2a 6.88d 14.63 7.44d 11.64
0.21 315.3b 91.2d 86.0b 24.0a 5.59f 27.49 6.26e 25.65
0.28 292.1c 93.1d 83.2c 23.7ab 5.18g 31.35 5.54f 34.20
0.35 282.8c 89.5d 81.0c 23.5ab 4.63h 42.55 4.99g 40.74

Table 2

Effects of saline stress on dry matter weight and dry matter accumulation of rice at the main growth stages"

基因型
Genotype
盐浓度(%)
Salt
concentration
干物重Dry matter weight (t/hm2) 拔节-抽穗Jointing-heading 抽穗-成熟Heading-maturity
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
积累量(t/hm2)
Accumulation
比例(%)
Percentage
积累量(t/hm2)
Accumulation
比例(%)
Percentage
武运粳30 0 3.4a 10.7a 17.4a 7.2a 41.5 6.7a 38.7
Wuyunjing 30 0.07 2.7bc 8.3bc 13.5bc 5.6b 41.3 5.2c 38.6
0.14 2.3e 7.0d 11.4c 4.7c 41.2 4.4d 38.3
0.21 1.9f 5.6f 9.1e 3.7d 40.9 3.5e 38.5
0.28 1.5g 4.6gh 7.4g 3.0e 40.8 2.8f 38.3
0.35 1.3gh 3.8h 6.1h 2.5f 40.7 2.3g 38.2
振稻23309 0 2.7bc 8.3bc 14.3b 5.6b 39.3 6.0b 42.0
Zhendao 23309 0.07 2.6c 8.0bc 13.7bc 5.4b 39.1 5.7b 41.8
0.14 2.5cd 7.3d 12.4c 4.8c 38.7 5.1c 41.5
0.21 2.2e 6.3e 10.7cd 4.1cd 38.4 4.4d 41.3
0.28 2.0f 5.6f 9.4e 3.6d 38.2 3.8e 40.8
0.35 1.8f 5.0g 8.4f 3.2e 37.9 3.4ef 40.3

Table 3

Correlations between yield and photosynthetic physiological characteristics of two rice varieties (lines)"

品种(系) Variety (Line) Pn Gs Ci Tr WUE AMC Fv/Fo Fv/Fm ΦPSⅡ qp qN SPAD
武运粳30 Wuyunjing 30 0.948** 0.883** -0.813* 0.982** 0.832* 0.937** 0.950** 0.899* 0.890* 0.888* 0.815* 0.978**
振稻23309 Zhendao 23309 0.937** 0.862* -0.537 0.990** 0.817* 0.913* 0.945** 0.928** 0.938** 0.918** 0.799 0.897*

Table 4

Correlations between Pn and other photosynthetic physiological characteristics of two rice varieties (lines)"

指标Index Gs Ci Tr WUE AMC Fv/Fo Fv/Fm ΦPSⅡ qp qN SPAD
Pn 0.971** -0.577* 0.945** 0.897** 0.988** 0.890** 0.903** 0.840** 0.930** 0.832** 0.984**
[1] 杨劲松 . 中国盐渍土研究的发展历程与展望. 土壤学报, 2008,45(5):837-845.
[2] 李冬顺, 杨劲松, 姚荣江 . 生态风险分析用于苏北滩涂土壤盐渍化风险评估研究. 土壤学报, 2010,47(5):857-864.
[3] 王芳, 朱跃华 . 江苏省沿海滩涂资源开发模式及其适宜性评价. 资源科学, 2009,31(4):619-628.
[4] 孙明法, 严国红, 唐红生 , 等. 江苏沿海滩涂盐碱地水稻种植技术要点. 大麦与谷类科学,2012(1):6-7.
[5] 薛寅 . 江苏盐城沿海滩涂盐碱地水稻种植技术要点. 吉林农业,2018(17):43-44.
[6] 王资生, 阮成江, 郑怀平 . 盐城滩涂资源特征及可持续利用对策. 海洋通报,2001(4):64-69.
[7] Shi D C, Sheng Y M, Zhao K f . Stress effects of mixed with various salinities on the seedlings of Aneuro lepidium Chinense. Acta Botanica Sinica, 1998,40(12):1136-1142.
[8] Shaddad M A K . Comparative effect of sodium carbonate,sodium sulphate,and sodium chloride on the growth and related metabolic activities of pea plants. Journal of Plant Nutrition, 1996,19(5):717-728.
[9] 石德成, 盛艳民, 赵可夫 . 复杂盐碱条件对向日葵胁迫作用主导因素的实验确定. 作物学报, 2002,28(4):461-467.
[10] 石德成, 李玉明, 杨国会 , 等. 盐碱混合生态条件的人工模拟及其对羊草胁迫作用因素分析. 生态学报, 2002,22(8):1323-1332.
[11] 李鹏, 濮励杰, 朱明 , 等. 江苏沿海不同时期滩涂围垦区土壤剖面盐分特征分析--以江苏省如东县为例. 资源科学, 2013,35(4):764-772.
[12] 张磊, 侯云鹏, 王立春 . 盐碱胁迫对植物的影响及提高植物耐盐碱性的方法. 东北农业科学, 2018,43(4):11-16.
[13] 赵可夫 . 植物抗盐生理. 北京: 中国科学技术出版社, 1993.
[14] 张瑞珍, 邵玺文, 童淑媛 , 等. 盐碱胁迫对水稻源库与产量的影响. 中国水稻科学, 2006,20(1):116-118.
[15] Munns R, Tester M . Mechanisms of salinity tolerance. Plant Biology, 2008,59:651-681.
[16] 李文阳, 胡秀娟, 王长进 , 等. 盐胁迫对不同品种玉米苗期生长与叶片光合特性的影响. 生态科学, 2019,38(2):51-55.
[17] 葛江丽, 石雷, 谷卫彬 , 等. 盐胁迫条件下甜高粱幼苗的光合特性及光系统II功能调节. 作物学报, 2007,33(8):1272-1278.
[18] Meloni D A, Oliva M A, Maritinez C A . Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 2003,49(1):69-76.
[19] 华春, 王仁雷 . 盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响. 山东农业大学学报(自然科学版), 2004,35(1):27-31.
[20] 孙璐, 周宇飞, 李丰先 , 等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012,45(16):3265-3272.
[21] 杨淑萍, 危常州, 梁永超 . 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010,43(8):1585-1593.
[22] 徐晨, 凌风楼, 徐克章 , 等. 盐胁迫对不同水稻品种光合特性和生理生化特性的影响. 中国水稻科学, 2013,27(3):280-286.
[23] 张璐颖, 文笑, 林勇明 , 等. 盐胁迫对台湾桤木幼苗光合作用和荧光特性的影响. 福建林学院学报, 2013,33(3):193-199.
[24] 王志春, 杨福, 齐春艳 , 等. 盐碱胁迫下水稻渗透调节的生理响应. 干旱地区农业研究, 2010,28(6):153-157.
[25] 符秀梅, 朱红林, 李小靖 , 等. 盐胁迫对水稻幼苗生长及生理生化的影响. 广东农业科学, 2010,37(4):19-21.
[26] 高显颖 . 不同浓度盐碱胁迫对水稻生长及生理生态特性影响. 长春:吉林农业大学, 2014.
[27] 吴家富, 杨博文, 向珣朝 , 等. 不同水稻种质在不同生育期耐盐鉴定的差异. 植物学报, 2017,52(1):77-88.
[28] Zheng Y P, Xu M, Hou R X , et al. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecology and Evolution, 2013,3(9):3095-3111.
[29] Haworth M, Heath J, Mcelwain J C . Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Annals of Botany, 2010,105(3):411-418.
[30] Farquhar G D, Sharkey T D . Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33(3):317-345.
[31] 郑国琦, 许兴, 徐兆祯 , 等. 盐胁迫对枸杞光合作用的气孔与非气孔限制. 西北植物学报, 2002,22(6):1355-1359.
[32] Rapacz M . Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. Photosynthetica, 2007,45(3):409-418.
[33] Lu C M, Zhang J H . Effects of water stress on photosystem Ⅱ photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 1999,50(336):1199-1206.
[34] Hafsi C, Falleh H, Saada M , et al. Potassium deficiency alters growth,photosynthetic performance,secondary metabolites content,and related antioxidantcapacity in Sulla carnosa grown under moderate salinity. Plant Physiology and Biochemistry, 2017,118:609-617.
[35] 唐玲, 李倩中, 荣立苹 , 等. 盐胁迫对鸡爪槭幼苗生长及其叶绿素荧光参数的影响. 西北植物学报, 2015,35(10):2050-2055.
[36] 刘晓龙, 徐晨, 徐克章 , 等. 盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响. 作物杂志,2014(2):88-92.
[37] 柯裕州, 周金星, 卢楠 , 等. 盐胁迫对桑树幼苗光合生理及叶绿素荧光特性的影响. 林业科学研究, 2009,22(2):200-206.
[38] 王荣富, 张云华, 钱立生 , 等. 超级杂交稻两优培九及其亲本的光氧化特性. 应用生态学报,2003(8):1309-1312.
[39] 李晓, 冯伟, 曾晓春 . 叶绿素荧光分析技术及应用进展. 西北植物学报,2006(10):2186-2196.
[40] Gao B B, Zheng C F, Xu J T , et al. Physiological responses of Enteromorpha linza and Enteromorpha prolifera to seawater salinity stress. Chinese Journal of Applied Ecology, 2012,23(7):1913-1920.
[41] Silva E C, Nogueira R J M C, de Araujo F P . Physiological responses to salt stress in young umbu plants. Environmental and Experimental Botany, 2008,63(3):147-157.
[42] Sun C X, Gao X X, Fu J Q , et al. Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant and Soil, 2015,388:99-117.
[43] Lee C K, Yoon Y H, Shin J . Growth and yield of rice as affected by saline water treatment at different growth stages. Korean Journal of Crop Science, 2002,47(6):402-408.
[1] An Zhu,Jie Gao,Jian Huang,Hao Wang,Yun Chen,Lijun Liu. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice [J]. Crops, 2020, 36(2): 1-8.
[2] Hua Yan,Zhongwen Yan,Jie Lei. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[3] Hongtao Shen,Fusheng Zhang,Dong Li,Jianhua Qiu,Xinghong Cai,Yubao Qin. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[4] Tianwen Wang,Changzhong Li,Guanghai Chen. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[5] Ruijie Li,Huihui Tang,Qingyan Wang,Yanli Xu,Mengying Fang,Peng Yan,Zhiqiang Dong,Fenglu Zhang. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[6] Diwen Chen,Wenling Zhou,Junhua Ao,Ying Huang,Yong Jiang,Xihong Han,Yimin Qin,Hong Shen. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[7] Wei Zhou,Fuzhu Cui,Hongkai Duan,Guohua Hao,Hui Yang,Ruirui Liu. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[8] Yegeng Fan,Haifeng Yan,Rongfa Chen,Lihang Qiu,Huiwen Zhou,Xing Huang,Mengling Weng,Jianming Wu,Yangrui Li,Shengman Wei. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
[9] Xin Liu,Rong Zhu,Mei Yang,Zhangyong Liu. Screening of High-Yield Germplasms for Ratoon Rice and Analysis of High Yield Composition [J]. Crops, 2020, 36(2): 28-33.
[10] Weixing Liu,Qunling He,Fengye Zhang,Xiaoyu Fan,Lei Chen,Ke Li,Jihua Wu. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[11] Zhichang Yang,Tao Shen,Zhuo Luo,Zhi Peng,Yuqian Hu,Tao Zi,Tinghao Xiong,Haixing Song. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[12] Zongjie Ya,Shuchang Lu,Kun Hou. Development Status, Problems and ApplicationProspects of Dry Direct Seeding Rice [J]. Crops, 2020, 36(2): 9-15.
[13] Tianxin Chen,Yanjie Wang,Yan Zhang,Xuhong Chang,Zhiqiang Tao,Demei Wang,Yushuang Yang,Yingjie Zhu,Akang Liu,Shubing Shi,Guangcai Zhao. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[14] Bo Zhang,Tiantian Gao,Hongbo Cheng,Rui Li,Yuwei Chai,Yawei Li,Shouxi Chai. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[15] Chen Tingmu,Sun Zhiguang,Xing Yungao,Fang Zhaowei,Wang Baoxiang,Liu Yan,Xu Dayong. Study on the Method of Determining Digestible Protein Content and Screening of Rice Resources [J]. Crops, 2020, 36(1): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars[J]. Crops, 2018, 34(4): 69 -78 .
[5] Jianxia Liu,Xiaodan Zhang,Runmei Wang,Feng Zhou,Wenying Liu,Zhiping Liu. Effects of Seed Soaking with 6-BA on Germination and Physiological Characteristics of Mung Bean under Salt Stress[J]. Crops, 2018, 34(1): 166 -172 .
[6] Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum[J]. Crops, 2018, 34(1): 56 -61 .
[7] . [J]. Crops, 1998, 14(S): 37 -44 .
[8] . [J]. Crops, 2009, 25(6): 13 -17 .
[9] . [J]. Crops, 2004, 20(6): 54 .
[10] . [J]. Crops, 1995, 11(4): 18 -20 .