Crops ›› 2020, Vol. 36 ›› Issue (4): 202-205.doi: 10.16035/j.issn.1001-7283.2020.04.029

Previous Articles     Next Articles

Effects of Different Fungicides on Field Control of Sunflower Sclerotinia Rot

Zhang Haiyang1(), Li Haiyan1(), Meng Qinglin2, He Chaoqun3, Liu Shuqing4   

  1. 1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
    3Heilongjiang Furui Seed Industry Co., Ltd, Harbin 150000, Heilongjiang, China
    4Agricultural Technology Extension Station, InnerMongolia Linxi Agriculture and Animal Husbandry Bureau, Chifeng 024000, Inner Mongolia, China
  • Received:2019-12-11 Revised:2020-03-02 Online:2020-08-15 Published:2020-08-11
  • Contact: Li Haiyan E-mail:ZhangHaiyang_Betty@163.com;byndlihy@126.com

Abstract:

In order to find out the field control effect of different fungicides on sunflower Sclerotinia sclerotiorum, using the methods of mycelial growth rate and spore germination to determine the inhibitory effects of five fungicides on the mycelial growth and ascospore germination of sunflower Sclerotinia sclerotiorum. A field control test was conducted, and the results showed that 20% penthiopyrod SC had the strongest inhibitory effect on mycelial growth, with the EC50 value of 0.0302μg/mL, followed by 75% nadiwen WG and 50% boscalid WG, with the EC50 values of 0.0370 and 0.2152μg/mL, respectively. The inhibitory effect of 50% boscalid WG on ascospores was strongest, with the EC50 value of 0.0563μg/mL. Field test results showed that the control effect of 50% boscalid WG (89.68%) on sunflower Sclerotinia was the best, with an yield increase of 34.58% compared with the control, and effectively improved agronomic-related traits. Comprehensive consideration of indoor virulence and field medicine, the results of the efficacy test showed that 50% boscalid WG had a good control effect on sunflower Sclerotinia sclerotiorum, and can be used as a rotating fungicide in field.

Key words: Sunflower sclerotinia rot, Fungicide, Mycelium growth, Spore germination, Field control

Table 1

In vitro inhibitory effects of five fungicides on sunflower Sclerotinia sclerotiorum"

处理
Treatment
药剂
Fungicide
菌丝生长抑制活性
Inhibitory activity on mycelial growth
子囊孢子萌发抑制活性
Inhibitory activity on ascospore germination
毒力回归方程
Regression equation
of toxicity
相关系数
Correlation
coefficient
EC50
(μg/mL)
毒力回归方程
Regression equation
of toxicity
相关系数
Correlation
coefficient
EC50
(μg/mL)
T1 50%啶酰菌胺WG y=0.6895x+5.6420 0.9624 0.2152 y=1.9962x+9.4901 0.9809 0.0563
T2 20%吡噻菌胺SC y=0.6289x+5.9561 0.9813 0.0302 y=0.7200x+5.3588 0.9969 0.3174
T3 75%拿敌稳WG y=1.0814x+6.5501 0.9899 0.0370 y=0.8147x+5.7690 0.9959 0.1137
T4 10%丙硫唑SC y=0.3634x+5.0242 0.9569 0.8578 y=0.9211x+4.2661 0.9632 6.2627
T5 24%噻呋酰胺SC y=1.5403x+4.4183 0.8896 2.3859 y=0.7113x+4.7850 0.9391 2.0057

Table 2

The control effects of five fungicides on sunflower Sclerotinia sclerotiorum"

处理
Treatment
药剂
Fungicide
药后天数Days after using fungicide (d)
7 14
病情指数
Disease index
平均防效(%)
Average control effect
病情指数
Disease index
平均防效(%)
Average control effect
T1 50%啶酰菌胺WG 2.65±1.06cC 82.27±7.11aA 0.90±0.50dC 89.68±5.72aA
T2 20%吡噻菌胺SC 7.04±0.99bcBC 52.91±6.61abAB 3.55±1.13bcdBC 59.33±13.00abAB
T3 75%拿敌稳WG 3.60±0.72bcC 75.94±4.83abA 1.60±0.57cdBC 81.61±6.59aAB
T4 10%丙硫唑SC 8.48±2.29bABC 43.28±15.31bAB 4.90±1.45bcABC 43.85±16.62bAB
T5 24%噻呋酰胺SC 13.80±1.81aAB 7.69±12.10cB 5.88±0.97abAB 32.53±11.09bB
CK H2O 14.95±2.14aA 8.72±1.22aA

Table 3

The effects of five fungicides on sunflower yields and its components"

处理
Treatment
药剂
Fungicide
实粒率
Rate of filled
seeds (%)
空壳率
Rate of empty
seeds (%)
百粒重
100-grain
weight (g)
单盘重
Weight per
disc (g)
产量
Yield
(kg/hm2)
较对照增产
Yield increase compared
with CK (%)
T1 50%啶酰菌胺WG 96.33 3.67 13.09 158.01 3 554.36aA 34.58
T2 20%吡噻菌胺SC 93.80 6.20 11.86 148.76 3 298.97abAB 24.91
T3 75%拿敌稳WG 93.33 6.67 11.85 140.53 2 708.72cdB 2.56
T4 10%丙硫唑SC 90.50 9.50 12.73 152.24 3 247.69abcAB 22.97
T5 24%噻呋酰胺SC 89.17 10.83 12.04 137.61 2 737.95bcdB 3.67
CK H2O 82.29 17.71 11.02 130.66 2 641.03dB
[1] 崔良基, 刘悦, 王德兴 . 我国发展向日葵生产潜力及对策. 杂粮作物, 2008,28(5):336-338.
[2] 中国农业年鉴编辑委员会. 中国农业年鉴. 北京: 中国农业出版社, 2009: 185.
[3] 唐庆华 . 新疆向日葵菌核病菌生物学特性及品种抗病性研究. 石河子:石河子大学, 2006.
[4] 王静, 张剑茹, 崔超敏 , 等. 向日葵菌核病研究进展. 内蒙古农业科技, 2006(6):25-28.
[5] 乔春贵, 李树强, 陈学君 , 等. 向日葵菌核病的研究和防治. 作物杂志, 1995(6):29-31.
[6] 孟庆林 . 向日葵菌核病发生规律及防治技术研究. 北京:中国农业科学院, 2013.
[7] Hu S, Zhang J, Zhang Y C , et al. Baseline sensitivity and toxic actions of boscalid against Sclerotinia sclerotiorum. Crop Protection, 2018,110:83-90.
[8] 智小青, 张艳芳, 董利宁 . 向日葵菌核病的室内药剂试验. 内蒙古农业科技, 2004(S2):6-8.
[9] 东保柱 . 用于防治向日葵菌核病拌种用粉剂的研制与应用. 呼和浩特:内蒙古农业大学, 2016.
[10] 刘红亮, 张春娥, 赵娜 , 等. 防治向日葵菌核病种子包衣药剂的室内筛选. 西北农业学报, 2017,26(4):625-634.
[11] 赵伟权 . 向日葵菌核病制病机理和综合防治技术. 农业与技术, 2017,37(16):58-59.
[12] 李易初, 孟庆林, 石凤梅 , 等. 田间防治向日葵菌核盘腐病的药剂筛选. 宁夏农林科技, 2015,56(7):53-54.
[13] 张捷, 杨新元, 贾爱红 , 等. 向日葵菌核病、黄萎病的发生及综合防治技术. 安徽农学通报, 2014,20(21):60-61.
[14] 李红霞, 陆悦健, 王建新 , 等. 禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析. 微生物学报, 2003,43(4):424-429.
[15] 周锋 . 我国核盘菌对菌核净抗药性的研究. 武汉:华中农业大学, 2014.
[16] 石志琦, 周明国, 叶钟音 . 核盘菌对菌核净的抗药性机制初探. 农药学学报, 2000,2(2):47-51.
[17] 马慧霞, 祝晓芬, 陈长军 , 等. 啶酰菌胺对核盘菌的毒力及防治效果研究//中国植物病理学会2009年学术年会论文集. 北京: 中国农业科学技术出版社, 2009: 682.
[18] 王勇 . 油菜菌核病菌抗药性治理及氯啶菌酯与啶酰菌胺的增效减量使用技术研究. 南京:南京农业大学, 2015.
[19] Wang Z, Ma L Y, Cao J . Recent advances in mechanisms of plant defense to Sclerotinia sclerotiorum. Frontiers in Plant Science, 2019,10:1314.
[20] 黄世荣, 张鹏博 . 啶酰菌胺等4种新药剂防治桑椹菌核病效果研究. 蚕桑通报, 2018,49(4):24-26.
[21] 顾炳朝, 朱桂梅, 岳绪国 , 等. 啶酰菌胺对油菜菌核病的作用方式及其田间防效. 江西农业学报, 2012,24(12):114-117.
[22] 周锋, 张小磊, 梁宏杰 . 50%啶酰菌胺WP的研制及其对油菜菌核病的田间防效. 湖北农业科学, 2014,53(6):1301-1303.
[23] 华乃震 . SDHI类杀菌剂啶酰菌胺. 世界农药, 2018,40(5):9-15.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!