Crops ›› 2020, Vol. 36 ›› Issue (6): 109-115.doi: 10.16035/j.issn.1001-7283.2020.06.015

Previous Articles     Next Articles

The Effects of Different Planting Patterns and Straw Returning to Field on Soil Improvement in the Yellow River Course Region

Liu Ying1(), Li Jie2, Zhao Lingxiao1, Li Chunxi1, Jiang Lina1, Zhang Daijing1, Ma Jianhui1()   

  1. 1School of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
    2Puyang Academy of Agricultural Sciences, Puyang 457000, Henan, China
  • Received:2020-03-18 Revised:2020-05-28 Online:2020-12-15 Published:2020-12-09
  • Contact: Ma Jianhui E-mail:528186800@qq.com;cricaas@163.com

Abstract:

Due to the long-term water impact, the farmland types in the old area of the Yellow River are mainly low- and medium-yielding fields. Therefore, the improvement of farmland quality in this area has become an important research topic for the green development of the middle and lower reaches of the Yellow River. Based on the ways of returning straw to the field in Qingfeng area of Puyang, three main crops including wheat, corn, and peanut, widely planted in the old area of the Yellow River have been chosen. In 2009, four long-term planting experiments (wheat-corn, wheat-peanut, wheat-corn-wheat-peanut and peanut single season. wheat, corn stover returned to field all, peanuts without straw) were set up to explore the effects of different planting patterns on the soil properties and microbial community structure. The results showed that the more straw returned to the field, the more soil organic matter content was increased. The wheat-peanut, wheat-corn-wheat-peanut rotation cropping model had the highest soil organic matter content and its soil moisture content was also significantly higher than other treatments. The soil bulk density had been reduced, which had significantly improved soil sandiness and improved the soil water storage capacity; the planting model with a large amount of straw returning to the field had significantly improved nutrient retention capacity and nutrient content; The response of the microbial community structure to different planting patterns was that the peanuts could significantly increase microbial abundance, and the diversity of microbial communities increased with the types of crops grown. The wheat-corn-wheat-peanut planting model is more suitable for the area of the old course of the Qingfeng Yellow River in Puyang, which is conducive to soil improvement and the sustainable development of regional agriculture.

Key words: Yellow River Course, Planting pattern, Physical and chemical properties of soil, Microbial diversity, Soil improvement

Fig.1

Soil moisture content and bulk density under different cropping patterns Different lowercase letters indicate significant difference at 0.05 level"

Table 1

Soil chemical properties under different cropping patterns"

土层
Soil depth
(cm)
处理
Treatment
有机质
Organic
matter (g/kg)
全氮
Total
N (g/kg)
全磷
Total
P (g/kg)
全钾
Total
K (g/kg)
碱解氮
Alkaline hydrolysis
N (mg/kg)
速效磷
Available
P (mg/kg)
速效钾
Available
K (mg/kg)
pH
0~10 WM 32.28a 1.11a 0.65a 1.78a 103.00a 9.67d 108.90b 7.66b
WMWP 31.29a 0.89b 0.62ab 1.78a 75.00b 18.30c 106.93b 7.95a
P 20.46c 0.70d 0.57b 1.76a 63.67c 36.87b 133.10a 7.95a
WP 24.99b 0.78c 0.61ab 1.71b 61.67c 43.63a 139.93a 8.00a
10~20 WM 33.79a 1.16a 0.59a 1.79a 106.67a 10.23d 97.87c 7.73c
WMWP 32.76a 0.85b 0.55b 1.76b 75.00b 18.87c 118.57bc 7.89b
P 21.10b 0.66d 0.53c 1.73c 57.00c 25.13b 135.3ab 7.90b
WP 23.16b 0.73c 0.54bc 1.72c 57.33c 28.07a 152.47a 8.04a
20~30 WM 33.16a 1.03a 0.54a 1.77a 95.00a 15.27bc 70.53d 7.94c
WMWP 30.64b 0.81b 0.51b 1.76a 67.67b 13.60c 90.33c 8.13ab
P 19.40c 0.50c 0.35d 1.72b 60.00b 16.50ab 120.83a 8.18a
WP 20.37c 0.49c 0.45c 1.73b 40.67c 18.10a 105.60b 8.12ab
30~40 WM 24.26a 0.45a 0.35a 1.72a 41.30a 7.00a 62.30a 8.28a
WMWP 22.95b 0.41b 0.30c 1.70b 30.00b 8.03a 59.90a 8.28a
P 18.89d 0.32c 0.25d 1.67bc 32.67b 4.30b 56.97a 8.21a
WP 20.60c 0.31c 0.33b 1.66c 30.67b 5.13b 63.03a 8.19a
40~50 WM 24.19a 0.41a 0.31a 1.69b 49.00a 6.33a 61.10a 8.29a
WMWP 22.75a 0.39a 0.25c 1.72a 26.33bc 6.60a 44.03b 8.32a
P 21.87a 0.31b 0.29b 1.58c 29.33b 2.50b 31.00c 8.25ab
WP 22.71a 0.33b 0.32a 1.68b 23.74c 2.50b 43.74b 8.20b

Table 2

OUT abundance and diversity index of bacteria in different cropping patterns"

处理
Treatment
OUT Chao指数
Chao index
Shannon指数
Shannon index
Simpson指数
Simpson index
WM 4 809b 5 806b 7.25a 0.0025a
WMWP 5 086a 6 098a 7.37a 0.0018b
P 5 005a 5 823b 7.33a 0.0018b
WP 4 997a 5 832b 7.31a 0.0019b

Fig.2

Comparison of bacterial communities in soil phylum classification of different planting patterns"

Fig.3

Horizontal clustering analysis of soil bacteria on genus level in different planting patterns"

Fig.4

Redundancy analysis of bacteria with soil factors in different planting patterns (phylum level)"

[1] 张义丰, 宁远. 黄河故道的开发利用与发展前景. 地理科学进展, 1997(1):40-46.
[2] 张天义, 薄志新. 构筑区域农业现代化平台——对河南省黄河故道区土地开发整理项目的分析和建议. 中国土地, 2003(4):40-42.
[3] 陈丹梅, 陈晓明, 梁永江. 轮作对土壤养分、微生物活性及细菌群落结构的影响. 草业学报, 2015,24(12):56-65.
[4] 牛倩云, 韩彦莎, 徐丽霞, 等. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响. 农业环境科学学报, 2018,37(12):2802-2809.
[5] Philipp G, Jan R, Anna J, et al. Environmental impacts of different crop rotations in terms of soil compaction. Journal of Environmental Management, 2016,181:54-63.
pmid: 27315601
[6] 宋丽萍, 罗珠珠, 李玲玲, 等. 陇中黄土高原半干旱区苜蓿-作物轮作对土壤物理性质的影响. 草业学报, 2015,24(7):12-20.
[7] 牛小霞, 牛俊义. 不同轮作制度对定西地区农田杂草群落的影响. 干旱地区农业研究, 2017,35(4):223-229.
[8] 侯占领, 苗小红, 牛银霞. 不同轮作制度下的土壤培肥施肥技术集成模式探讨. 安徽农学通报, 2012,18(7):116-117.
[9] Wang J Z, Wang X J, Xu M G, et al. Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems, 2015,102:371-381.
[10] 王永洁, 史健峰, 崔虎, 等. 秸秆还田对土壤理化性质和玉米产量的影响. 科技通报, 2019,35(7):97-103.
[11] 顾美英, 徐万里, 茆军, 等. 新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性. 生态学报, 2012,32(10):3031-3040.
[12] 张立成, 邵继海, 林毅青, 等. 稻-稻-油菜轮作对土壤微生物活性和多样性的影响. 生态环境学报, 2017,26(2):204-210.
[13] 吴宏亮, 康建宏, 陈阜, 等. 不同轮作模式对砂田土壤微生物区系及理化性状的影响. 中国生态农业学报, 2013,21(6):674-680.
[14] 张晓晓, 安美君, 吴凤芝. 不同生态条件对西瓜根际土壤微生物群落结构的影响. 北方园艺, 2017(3):101-108.
[15] 中国科学院土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978.
[16] 武天云, Schoenau J J, 李凤民, 等. 土壤有机质概念和分组技术研究进展. 应用生态学报, 2004(4):717-722.
[17] 张亚丽, 吕家珑, 金继运, 等. 施肥和秸秆还田对土壤肥力质量及春小麦品质的影响. 植物营养与肥料学报, 2012,18(2):307-314.
[18] 李玮, 乔玉强, 陈欢, 等. 秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响. 生态学报, 2014,34(17):5052-5061.
[19] 庄恒扬, 刘世平, 沈新平, 等. 长期少免耕对稻麦产量及土壤有机质与容重的影响. 中国农业科学, 1999(4):41-46.
[20] 付国占, 李潮海, 王俊忠, 等. 残茬覆盖与耕作方式对土壤性状及夏玉米水分利用效率的影响. 农业工程学报, 2005(1):52-56.
[21] 路文涛, 贾志宽, 高飞, 等. 秸秆还田对宁南旱作农田土壤水分及作物生产力的影响. 农业环境科学学报, 2011,30(1):93-99.
[22] 徐蒋来, 胡乃娟, 张政文, 等. 连续秸秆还田对稻麦轮作农田土壤养分及碳库的影响. 土壤, 2016,48(1):71-75.
[23] 高日平, 赵思华, 高宇, 等. 内蒙古黄土高原秸秆还田对土壤养分特性及玉米产量的影响. 北方农业学报, 2019,47(4):52-56.
[24] 史云峰, 周娜娜, 黎明, 等. 秸秆还田条件下水稻-瓜菜轮作对土壤肥力的影响. 海南热带海洋学院学报, 2017,24(5):76-80.
[25] 刘兰清, 杨晨璐, 王维钰, 等. 免耕条件下秸秆还田与施肥对小麦-玉米轮作系统土壤养分和酶活性的影响. 华北农学报, 2017,32(6):213-221.
[26] 龚万涛, 何瑞银, 马建永, 等. 秸秆还田条件下不同种植方式对土壤养分的影响. 科学技术与工程, 2012,12(8):1737-1739,1744.
[27] 任豫霜, 朱丹, 姜伟, 等. 酸性土壤中接种耐酸根瘤菌对豆科植物根际微生态的影响. 植物营养与肥料学报, 2017,23(4):1077-1088.
[28] Roller C, Wagner M, Amann R, et al. In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology, 1994,140:2849-2858.
pmid: 8000548
[1] Chen Juan, He Jinhong, Liu Jili, Kang Jianhong, Wu Na. Effect of Different Planting Patterns on Starch Formation and Yield of Potato in Semi-Arid Area [J]. Crops, 2020, 36(3): 169-176.
[2] Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3 [J]. Crops, 2019, 35(5): 166-172.
[3] Liping Mao,Dongtang Wu,Weimin Guo,Jun Ren. The Improved Effects of Planting Asparagus on Soil in Cold Desertification Area [J]. Crops, 2019, 35(1): 180-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!