Crops ›› 2023, Vol. 39 ›› Issue (6): 261-269.doi: 10.16035/j.issn.1001-7283.2023.06.036

Previous Articles    

Isolation and Identification of Antagonistic Actinomycetes Strains against Fusarium Wilt of Cucumber

Xiong Yuting1(), Zheng Luyao1(), Jia Wenqi1, Li Man1, Chen Jianing1, Li Kuihua1(), Gao Yuliang2()   

  1. 1College of Agricultural, Yanbian University, Yanji 133002, Jilin, China
    2Yanbian Academy of Agricultural Sciences, Longjing 133400, Jilin, China
  • Received:2023-05-08 Revised:2023-06-05 Online:2023-12-15 Published:2023-12-15

Abstract:

Fusarium wilt of cucumber is a primarily soil-borne disease which lead to yield loss and quality decline in cucumber. Actinomycetes isolates were separated from cucumber-cultivated soil. G8 strain of which was closest relative to Streptomyces rochei. The cucumber Fusarium wilt of mycelia growth inhibition tests and biocontrol efficiency experiments in the greenhouse were employed using G8 strain of Streptomyces. The results showed that a total of 43 actinomycetes isolated from cucumber cultivated glasshouse soil, of which 31 isolates belonged to Streptomyces. The strain G8 inhibited Fusarium wilt of mycelial growth, and biocontrol effect on Fusarium wilt of cucumber was 75.5%. 16S rDNA primer and PCR amplification products using specific primer were aligned to NCBI-BLAST database clearly showed that G8 strain was a S.rochei.

Key words: Cucumber Fusarium wilt, Actinomycetes, Antagonistic strain, Streptomyces rochei

Fig.1

The colonial morphology of some strains (a) G8 strain, (b) Achromobacter, (c) Variovorax, (d) Bradyrhizobium, (e)-(i) Streptomyces"

Table 1

The sequencing results of 43 strains"

序号
Number
菌株编号
Strain number
最相近种属
Most closely related species
登录号
Accession number
最大相似度
Maximum similarity (%)
1 A1 利迪链霉菌NBRC 110027T Streptomyces lydicamycinicus NBRC 110027T BBNO01000020 100.00
2 A2 草地链霉菌ch24T Streptomyces pratensis ch24T JQ806215 100.00
3 A3 西唐链霉菌NRRL ISP-5322T Streptomyces setonii NRRL ISP-5322T MUNB01000146 100.00
4 A4 德米托链霉菌MS 405T Streptomyces durmitorensis MS 405T DQ067287 99.78
5 A5 西唐链霉菌NRRL ISP-5322T Streptomyces setonii NRRL ISP-5322T MUNB01000146 100.00
6 A6 草地链霉菌ch24T Streptomyces pratensis ch24T JQ806215 100.00
7 A7 草地链霉菌ch24T Streptomyces pratensis ch24T JQ806215 100.00
8 A8 利迪链霉菌NBRC 110027T Streptomyces lydicamycinicus NBRC 110027T BBNO01000020 100.00
9 A9 利迪链霉菌NBRC 110027T Streptomyces lydicamycinicus NBRC 110027T BBNO01000020 100.00
10 A10 西唐链霉菌NRRL ISP-5322T Streptomyces setonii NRRL ISP-5322T MUNB01000146 100.00
11 A11 链霉菌NEAU-ML8T Streptomyces kronopolitis NEAU-ML8T KP050495 99.92
12 A12 西唐链霉菌NRRL ISP-5322T Streptomyces setonii NRRL ISP-5322T MUNB01000146 100.00
13 A13 珊瑚状放线菌IFO 14095T Actinocorallia libanotica IFO 14095T U49007 99.84
14 A14 西唐链霉菌NRRL ISP-5322T Streptomyces setonii NRRL ISP-5322T MUNB01000146 99.39
15 A15 草地链霉菌ch24T Streptomyces pratensis ch24T JQ806215 100.00
16 A16 慢生根瘤菌属PAC68T Bradyrhizobium jicamae PAC68T LLXZ01000092 99.76
17 A17 匈牙利链霉菌MBRL 251T Streptomyces hundungensis MBRL 251T JN560157 98.94
18 A18 盐屋链霉菌NRRL B-5408T Streptomyces sioyaensis NRRL B-5408T DQ026654 99.13
19 A19 盐屋链霉菌NRRL B-5408T Streptomyces sioyaensis NRRL B-5408T DQ026654 99.85
20 A20 德米托链霉菌MS 405T Streptomyces durmitorensis MS 405T DQ067287 99.76
21 A21 利迪链霉菌NBRC 110027T Streptomyces lydicamycinicus NBRC 110027T BBNO01000020 100.00
22 A22 贪噬菌属BAM-48T Variovorax boronicumulans BAM-48T AB300597 99.63
23 A23 利迪链霉菌NBRC 110027T Streptomyces lydicamycinicus NBRC 110027T BBNO01000020 100.00
24 A24 匈牙利链霉菌MBRL 251T Streptomyces hundungensis MBRL 251T JN560157 99.06
25 G1 假单胞菌属P50T Pseudomonas piscium P50T LR797558 99.92
26 G2 好望角链霉菌NRRL B-24240T Streptomyces speibonae NRRL B-24240T JNXM01000266 99.55
27 G3 亚洲假单胞菌RYU5T Pseudomonas asiatica RYU5T MH517510 98.13
28 G4 无色杆菌属LMG 1866T Achromobacter ruhlandii LMG 1866T CADIJL010000070 99.70
28 G5 剑菌属Casida AT Ensifer adhaerens Casida AT JNAE01000171 100.00
30 G6 好望角链霉菌NRRL B-24240T Streptomyces speibonaeNRRL B-24240T JNXM01000266 99.54
31 G7 米氏假单胞菌CIP 105470T Pseudomonas migulae CIP 105470T AF074383 99.50
32 G8 娄彻氏链霉菌NRRL B-2410T Streptomyces rochei NRRL B-2410T MUMD01000370 100.00
33 G9 白色链霉菌NRRL B-1305T Streptomyces albogriseolus NRRL B-1305T AJ494865 100.00
34 G10 无色杆菌属LMG 1866T Achromobacter ruhlandii LMG 1866T CADIJL010000070 99.78
35 G11 白色链霉菌NRRL B-1305T Streptomyces albogriseolus NRRL B-1305T AJ494865 100.00
36 G12 白色链霉菌NRRL B-1305T Streptomyces albogriseolus NRRL B-1305T AJ494865 100.00
37 G13 白色链霉菌NRRL B-1305T Streptomyces albogriseolus NRRL B-1305T AJ494865 100.00
38 G14 白色链霉菌NRRL B-1305T Streptomyces albogriseolus NRRL B-1305T AJ494865 100.00
39 G15 白色链霉菌NRRL B-1305T Streptomyces albogriseolus NRRL B-1305T AJ494865 100.00
40 G16 白色链霉菌NRRL B-1305T Streptomyces albogriseolus NRRL B-1305T AJ494865 100.00
41 G17 无色杆菌属LMG 1866T Achromobacter ruhlandii LMG 1866T CADIJL010000070 99.78
42 G18 珊瑚状放线菌JCM 8201T Actinocorallia aurantiaca JCM 8201T AF134066 99.22
43 G20 剑菌属Casida AT Ensifer adhaerens Casida AT JNAE01000171 100.00

Fig.2

16S rDNA phylogenetic tree of different actinomycete strains"

Fig.3

Inhibitory effects of cucumber Fusarium wilt strains in vitro and control efficiency of cucumber Fusarium wilt in the greenhouse (a) and (b) indicate inhibitory experiments in vitro, (a) Growth and development of cucumber Fusarium wilt strains on the PDA media (control), (b) Growth and development of cucumber Fusarium wilt strains on the PDA media with G8 Actnomycetes; (c)-(e) indicate chemical experiment in the greenhouse, (c) Non agentia treated (control), (d) Carbendazim treatment, (e) G8 Actnomycetes treatment"

Table 2

The incidence rate and control efficiency of cucumber Fusarium wilt"

处理
Treatment
发病率
Incidentce rate (%)
防治效果
Control efficiency (%)
多菌灵药剂Carbendazim 76.5±2.9b 14.5±0.8
G8 21.9±2.7c 75.5±2.3**
对照Control 89.4±2.9a

Fig.4

Colonial morphology of G8 Actnomycetes on ISP2 (left) and ISP3 (right) medium"

Fig.5

Amplification of DNA with G8 Actnomycetes strain (a) The results of amplificated by specific primer, (b) The results of amplificated by 16S rDNA universal primer; line 1~4 showed G8 Actnomycetes and line 5 indicate negative control, M: Marker DL 2000"

Table 3

Sequence alignment results obtained from specific primers"

类型
Description
学名
Scientific name
最高分
Max
score
总分
Total
score
匹配度
Query
cover (%)
期望值
E-value
匹配占比
Percent
identity (%)
序列长度
Accession
length (bp)
编号
Accession
链霉菌E1N263 16S核糖体RNA基因,部分序列
Streptomyces sp. E1N263 16S ribosomal RNA gene, partial sequence
链霉菌E1N263
Streptomyces sp. E1N263
281 281 95 3e-71 97.59 1418 KX279607.1
娄彻氏链霉菌ADLK1 16S核糖体RNA基因,部分序列
Streptomyces rochei strain ADLK1 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
281 281 97 3e-71 97.04 1502 KT781124.1
链霉菌Zapt6 16S核糖体RNA基因,部分序列
Streptomyces sp. Zapt6 16S ribosomal RNA gene, partial sequence
链霉菌Zapt6
Streptomyces sp. Zapt6
281 281 95 3e-71 97.59 829 DQ164424.1
紫色链霉菌AC02 16S核糖体RNA基因,部分序列
Streptomyces violaceus strain AC02 16S ribosomal RNA gene, partial sequence
紫色链霉菌
Streptomyces violaceus
279 279 99 8e-71 96.00 799 OQ559569.1
安氏链霉菌PA06 16S核糖体RNA基因,部分序列
Streptomyces ambofaciens strain PA06 16S ribosomal RNA gene, partial sequence
安氏链霉菌
Streptomyces ambofaciens
279 279 99 8e-71 96.00 919 OQ559107.1
娄彻氏链霉菌AF03 16S核糖体RNA基因,部分序列
Streptomyces rochei strain AF03 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
279 279 99 8e-71 96.00 930 OQ558840.1
深海链霉菌CAP12 16S核糖体RNA基因,部分序列
Streptomyces koyangensis strain CAP12 16S ribosomal RNA gene, partial sequence
深海链霉菌
Streptomyces koyangensis
279 279 99 8e-71 96.00 1463 OQ557958.1
紫色链霉菌EC01 16S核糖体RNA基因,部分序列
Streptomyces violaceus strain EC01 16S ribosomal RNA gene, partial sequence
紫色链霉菌
Streptomyces violaceus
279 279 99 8e-71 96.00 950 OQ557514.1
海洋放线菌ODS10 16S核糖体RNA基因,部分序列
Streptomyces lusitanus strain ODS10 16S ribosomal RNA gene, partial sequence
海洋放线菌
Streptomyces lusitanus
279 279 99 8e-71 96.00 938 OQ557452.1
链霉菌A6Y6 16S核糖体RNA基因,部分序列
Streptomyces sp. strain A6Y6 16S ribosomal RNA gene, partial sequence
链霉菌
Streptomyces sp.
279 279 99 8e-71 96.00 1490 OQ547297.1
云南链霉菌P86染色体,全基因组
Streptomyces yunnanensis strain P86 chromosome, complete genome
云南链霉菌
Streptomyces yunnanensis
279 1959 94 8e-71 97.58 9 982 274 CP095749.1
娄彻氏链霉菌AC143 16S核糖体RNA基因,部分序列
Streptomyces rochei strain AC143 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
279 279 99 8e-71 96.00 1418 OQ519886.1
娄彻氏链霉菌Z331-A 16S核糖体RNA基因,部分序列
Streptomyces rochei strain Z331-A 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
279 279 99 8e-71 96.00 1169 OQ509989.1
放线菌X93-1 16S核糖体RNA基因,部分序列
Actinomycetia bacterium strain X93-1 16S ribosomal RNA gene, partial sequence
放线菌
Actinomycetia bacterium
279 279 99 8e-71 96.00 1399 OQ509821.1
放线菌378 16S核糖体RNA基因,部分序列
Actinomycetia bacterium strain 378 16S ribosomal RNA gene, partial sequence
放线菌
Actinomycetia bacterium
279 279 99 8e-71 96.00 1515 OQ509818.1
链霉菌AKT34 16S核糖体RNA基因,部分序列
Streptomyces sp. strain AKT34 16S ribosomal RNA gene, partial sequence
链霉菌
Streptomyces sp.
279 279 99 8e-71 96.00 1381 OQ506606.1

Table 4

Sequence alignment results obtained from 16S universal primers"

类型
Description
学名
Scientific name
最高分
Max
score
总分
Total
score
匹配度
Query
cover (%)
期望值
E-value
匹配占比
Percent
identity (%)
序列长度
Accession
length (bp)
编号
Accession
娄彻氏链霉菌SCSIOZ-SH08 16S核糖体RNA基因,部分序列
Streptomyces rochei strain SCSIOZ-SH08 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2649 2649 99 0.0 99.86 1459 KC747476.1
娄彻氏链霉菌SCSIOZ-SH07 16S核糖体RNA基因,部分序列
Streptomyces rochei strain SCSIOZ-SH07 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2649 2649 99 0.0 99.86 1461 KC747475.1
娄彻氏链霉菌SCSIOZ-SH06 16S核糖体RNA基因,部分序列
Streptomyces rochei strain SCSIOZ-SH06 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2645 2645 99 0.0 99.72 1461 KC747474.1
娄彻氏链霉菌LN204 16S核糖体RNA基因,部分序列
Streptomyces rochei strain LN204 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2643 2643 99 0.0 99.72 1459 MH265958.1
娄彻氏链霉菌CB6J5 16S核糖体RNA基因,部分序列
Streptomyces rochei strain CB6J5 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2643 2643 99 0.0 99.72 1458 KJ531619.1
娄彻氏链霉菌SCSIOZ-SH12 16S核糖体RNA基因,部分序列
Streptomyces rochei strain SCSIOZ-SH12 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2643 2643 99 0.0 99.72 1457 KC747480.1
娄彻氏链霉菌SCSIOZ-SH09 16S核糖体RNA基因,部分序列
Streptomyces rochei strain SCSIOZ-SH09 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2643 2643 99 0.0 99.65 1448 KC747477.1
娄彻氏链霉菌SCSIOZ-SH05 16S核糖体RNA基因,部分序列
Streptomyces rochei strain SCSIOZ-SH05 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2643 2643 99 0.0 99.65 1455 KC747473.1
娄彻氏链霉菌xsd08098 16S核糖体RNA基因,部分序列
Streptomyces rochei strain xsd08098 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2643 2643 99 0.0 99.72 1461 FJ481055.1
娄彻氏链霉菌SCSIOZ-SH13 16S核糖体RNA基因,部分序列
Streptomyces rochei strain SCSIOZ-SH13 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2641 2641 99 0.0 99.65 1456 KC747481.1
链霉菌YDG17 16S核糖体RNA基因,部分序列
Streptomyces sp. YDG17 16S ribosomal RNA gene, partial sequence
链霉菌YDG17
Streptomyces sp. YDG17
2641 2641 99 0.0 99.79 1467 U621883.1
娄彻氏链霉菌UAE1-3 16S核糖体RNA基因,部分序列
Streptomyces rochei strain UAE1-3 16S ribosomal RNA gene, partial sequence
娄彻氏链霉菌
Streptomyces rochei
2639 2639 99 0.0 99.52 1519 MN795133.1
链霉菌B2KY 16S核糖体RNA基因,部分序列
Streptomyces sp. strain B2KY 16S ribosomal RNA gene, partial sequence
链霉菌
Streptomyces sp.
2639 2639 99 0.0 99.52 1484 MN625924.1
链霉菌RBST1-4 16S核糖体RNA基因,部分序列
Streptomyces sp. RBST1-4 gene for 16S ribosomal RNA, partial sequence
链霉菌
Streptomyces sp.
2639 2639 99 0.0 99.52 1519 LC489245.1
链霉菌SGAir0924染色体,全基因组
Streptomyces sp. SGAir0924 chromosome, complete genome
链霉菌SGAir0924
Streptomyces sp. SGAir0924
2639 15 834 99 0.0 99.65 7 653 753 CP027297.1
链霉菌SS52染色体,全基因组
Streptomyces sp. SS52 chromosome, complete genome
链霉菌SS52
Streptomyces sp. SS52
2639 15 834 99 0.0 99.65 8 184 045 CP039123.1
[1] 张圣平, 苗晗, 薄凯, 等. “十三五”我国黄瓜遗传育种研究进展. 中国蔬菜, 2021, 386(4):16-26.
[2] 郭嘉华, 武兆昕, 李蕾, 等. 西芹腐根二次酮层物对黄瓜枯萎病的诱导抗性及其转录组学分析. 植物病理学报, 2022, 52(3):364-376.
[3] Jin X, Shi Y J, Wu F Z, et al. Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusariuml wilt disease. Scientia Agricola, 2020, 77(5):1-9.
[4] 白雪, 张晓晓, 季苇芹, 等. 黄瓜细菌性茎枯萎病病原鉴定及温度对其致病力的影响. 植物保护, 2021, 47(4):28-37,65.
[5] Wang Y, Zhang J, Sun Y, et al. Evaluating the potential value of natural product cuminic acid against plant pathogenic fungi in cucumber. Molecules, 2017, 22(11):1914.
doi: 10.3390/molecules22111914
[6] Hu J L, Lin X G, Wang J H, et al. Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils. Pedosphere, 2010, 20(5):586-593.
doi: 10.1016/S1002-0160(10)60048-3
[7] 刘琴, 徐健, 刘怀阿, 等. 黄瓜内生放线菌SR-1102分离及对枯萎病菌拮抗活性. 扬州大学学报(农业与生命科学版), 2015, 36(2):83-88.
[8] Luo W J, Liu L D, Qi G F, et al. Embedding Bacillus velezensis NH-1 in microcapsules for biocontrol of cucumber Fusarium Wilt. Applied and Environmental Microbiology, 2019, 85(9):3128- 3118.
[9] Raza W, Ling N, Zhang R, et al. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Critical Reviews in Biotechnology,2017, 37(2):202-212.
doi: 10.3109/07388551.2015.1130683
[10] Han L J, Wang Z Y, Li N, et al. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Applied Soil Ecology, 2019, 136(4):55-66.
doi: 10.1016/j.apsoil.2018.12.011
[11] Chen Y, Zhou D, Qi D, et al. Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil. Frontiers in Microbiology, 2017, 8:2704-2722.
doi: 10.3389/fmicb.2017.02704
[12] Ara I. Antiviral activities of streptomycetes against tobacco mosaic virus(TMV)in Datura plant:evaluation of different organic compounds in their metabolites. African Journal of Biotechnology, 2012, 11(8):2130-2138.
[13] Luo M, Chen Y, He J, et al. Identification of a new Talaromyces strain DYM25 isolated from the Yap Trench as a biocontrol agent against Fusarium wilt of cucumber. Microbiological Research, 2021, 251:126841.
doi: 10.1016/j.micres.2021.126841
[14] Barka E A, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 2016, 80(1):1-43.
doi: 10.1128/MMBR.00019-15
[15] 兰成忠, 甘林, 代玉立, 等. 黄瓜枯萎病菌拮抗菌的筛选、鉴定和防效测定. 中国生物防治学报, 2023, 39(1):184-193.
doi: 10.16409/j.cnki.2095-039x.2023.02.006
[16] Chandrima B, Srimoyee B, Udita A, et al. Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling,India. Scientific Reports, 2020, 10(1):15536.
doi: 10.1038/s41598-020-72439-z
[17] Van Minh N, Woo E E, Kim J Y, et al. Antifungal Substances from Streptomyces sp. A 3265 Antagonistic to Plant Pathogenic Fungi. Mycobiology, 2015, 43(3):333-338.
doi: 10.5941/MYCO.2015.43.3.333
[18] Kim Y S, Lee I K, Yun B S. Antagonistic effect of Streptomyces sp. BS062 against Botrytis diseases. Mycobiology, 2015, 43(3):339-342.
doi: 10.5941/MYCO.2015.43.3.339
[19] 罗文建, 杨凡, 史宣杰, 等. 黄瓜枯萎病拮抗菌的分离鉴定及其生物防效. 华中农业大学学报, 2018, 37(3):32-38.
[20] Raza W, Ling N, Zhang R, et al. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Critical Reviews in Biotechnology,2016, 26(2):1-11.
doi: 10.1080/07388550500508644
[21] 虞凡枫, 赵进, 孙铭悦, 等. 黄瓜枯萎病拮抗芽孢杆菌A7-3-14的筛选及鉴定. 北方园艺, 2022, 498(3):41-46.
[22] 石义妃, 耿佩冰, 吴皓, 等. 金黄垂直链霉菌DF06的分类鉴定及防病促生作用. 中国生物防治学报, 2023, 39(2):407-417.
doi: 10.16409/j.cnki.2095-039x.2023.02.011
[23] Wang L Y, Zhang Y F, Yang D Y, et al. Aureoverticillactam, a potent antifungal macrocyclic Lactam from Streptomyces aureoverticillatus HN6, Generates Calcium Dyshomeostasis- Induced Cell Apoptosis via the Phospholipase C Pathway in Fusarium oxysporum f. sp.cubense Race 4. Phytopathology, 2021, 111(11):2010-2022.
doi: 10.1094/PHYTO-12-20-0543-R
[24] 胡琴琴. 生防放线菌筛选及对西瓜连作障碍修复机制研究. 杨凌:西北农林科技大学, 2021.
[25] 李亚莉, 侯栋, 岳宏忠, 等. 黄瓜枯萎病拮抗菌Burkholderia gladioli L1-3的分离鉴定及防病促生效果. 中国蔬菜, 2022, 406(12):52-58.
[26] 赵帅, 田长彦, 史应武, 等. 黄瓜枯萎病生防菌HD-087产抗菌物质条件的优化及抑菌作用初探. 微生物学通报, 2013, 40(5):802-811.
[27] Liu W, Wang J, Zhang H, et al. Transcriptome analysis of the production enhancement mechanism of antimicrobial lipopeptides of Streptomyces bikiniensis HD-087 by co-culture with Magnaporthe oryzae Guy11. Microbial Cell Factories, 2022, 21 (1):187.
doi: 10.1186/s12934-022-01913-2
[28] Qiong W, Ruiyan S, Mi N, et al. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE, 2017, 12(6):e0179957.
doi: 10.1371/journal.pone.0179957
[29] Singh S, Balodi R. Bio-management of soil borne pathogens infesting cucumber (Cucumis sativus L.) under protected cultivation system. Biological Control, 2021, 157(10):104569.
doi: 10.1016/j.biocontrol.2021.104569
[30] Poudel B, Shterzer N, Sbehat Y, et al. Characterizing the chicken gut colonization ability of a diverse group of bacteria. Poultry Science, 2022, 101(11):102136.
doi: 10.1016/j.psj.2022.102136
[31] Won S J, Kwon J H, Kim D H, et al. The effect of Bacillus licheniformis MH 48 on control of foliar fungal diseases and growth promotion of Camellia oleifera seedlings in the coastal reclaimed land of Korea. Pathogens, 2019, 8(1):6.
doi: 10.3390/pathogens8010006
[32] Hanif A, Zhang F, Li P P, et al. Fengycin produced by Bacillus amyloliquefaciens FZB 42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins, 2019, 11(5):295.
doi: 10.3390/toxins11050295
[33] 廖红东, 袁珊珊, 杨远柱, 等. 一株拮抗稻瘟病内生链霉菌OsiSh-10的筛选与鉴定. 湖南大学学报(自然科学版), 2015, 42(12):80-87.
[34] 陈国康, 陈世春, 肖崇刚, 等. 烟草根围土壤对主要烟草病害的拮抗放线菌株筛选及其鉴定. 西南大学学报(自然科学版), 2009, 31(12):30-34.
[35] 刘宇, 刘建华, 刘伟成, 等. 利迪链霉菌A02诱导番茄抗灰霉病作用机制研究——对植株防御酶系的影响. 华北农学报, 2007(2):152-155.
doi: 10.3321/j.issn:1000-7091.2007.02.037
[36] 卢彩鸽, 刘伟成, 刘霆, 等. 利迪链霉菌A01活性代谢产物对甘蓝枯萎病菌的抑制作用及其机理. 中国农业科学, 2012, 45(18):3764-3772.
doi: 10.3864/j.issn.0578-1752.2012.18.009
[37] 鲁妍璇, 曹毅, 李博雅, 等. 利迪链霉菌K2对灰霉病菌的抑菌效果及抑菌物质鉴定. 微生物学报, 2023, 63(5):1991-2006.
[38] 赵赛, 张维宏, 建嫄, 等. 拮抗菌Z-L-22不同剂型对番茄溃疡病的防治效果. 植物保护, 2016, 42(3):250-254.
[39] Gong Y, Liu J Q, Xu M J, et al. Antifungal volatile organic compounds from Streptomyces setonii WY 228 control black spot disease of sweet potato. Applied and Environmental Microbiology, 2022, 88(6):2317-2321.
[40] Lian Q, Zhang J, Gan L, et al. The Biocontrol Efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in Tomato. BioMed Research International, 2017, 2017:9486794.
[41] Zhang J, Chen J, Hu L, et al. Antagonistic action of Streptomyces pratensis  S 10 on Fusarium graminearum and its complete genome sequence. Environmental Microbiology, 2021, 23(4):1925-1940.
doi: 10.1111/1462-2920.15282 pmid: 33073508
[42] 李立梅, 李鑫, 沈佳龙, 等. 杨树烂皮病生防链霉菌的筛选及鉴定. 植物保护学报, 2017, 44(1):137-144.
[43] 席娇, 徐腾起, 刘玉涛, 等. Streptomyces rochei D74菌剂对向日葵、列当及其根际微生物的影响. 微生物学报, 2023, 63(2):745-759.
[44] Kanini G S, Katsifas E A, Savvides A L, et al. Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f.sp. lycopersici. BioMed Research International, 2013, 2013:387230.
[45] 王宁, 黄伟, 鲁致远, 等. 苹果树腐烂病生防链霉菌A144的鉴定及其代谢产物的抑菌活性. 西北农业学报, 2023, 32(3):440-449.
[46] Al Raish S M, Saeed E E, Alyafei D M, et al. Evaluation of streptomycete actinobacterial isolates as biocontrol agents against royal poinciana stem canker disease caused by the fungal pathogen Neoscytalidium dimidiatum. Biological Control, 2021, 164:104783.
doi: 10.1016/j.biocontrol.2021.104783
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!