Crops ›› 2023, Vol. 39 ›› Issue (6): 257-260.doi: 10.16035/j.issn.1001-7283.2023.06.035

Previous Articles     Next Articles

Screening of Inducers for Sunflower Sclerotinia sclerotiorum and Application of Hypersensitive Protein

Li Hepeng1(), Zhang Yunhua2, Meng Qinglin2, Ma Ligong2, Yu Hongtao1, Li Haiyan3, Li Yichu2, Liu Jia2, Shi Fengmei2, Yang Fan2, Liu Liang2   

  1. 1Suihua Branch, Heilongjiang Academy of Agricultural Sciences, Suihua 152000, Heilongjiang, China
    2Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
    3College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2022-04-15 Revised:2022-08-26 Online:2023-12-15 Published:2023-12-15

Abstract:

In order to explore the effects of different plant inducers on sunflower sclerotiniose, field efficacy tests were carried out on ten inducers successively, two inducers with good control effect on sunflower sclerotiniose were selected, and the application technology of hypersensitive protein was further studied. The results showed that, 317g/ha of 3% hypersensitive protein MG applied to the flower plate twice at the budding stage and the initial flowering stage of sunflower could effectively induce sunflower resistance to Sclerotinia sclerotiorum, with a control effects of 52.7%-68.3%, which was not significantly different from chemical control (dimethachlon), so it was an ideal inducer of resistance to S.sclerotiorum. At the same time, the inducing effects of 2000g/ha dose of 0.5% chitosan and hypersensitive protein did not differ significantly. Sunflower sclerotinia can also be treated and prevented with it.

Key words: Sunflower sclerotinia, Inducer, Hypersensitive protein

Table 1

Control effects and yield increase of inducers against Sclerotinia sclerotiorum (2018)"

药剂
Fungicide
发病率
Incidence
(%)
病情指数
Disease
index
平均防效
Average control
effect (%)
小区产量
Plot yield
(kg)
较对照增产
Yield increase compared
with CK (%)
低聚糖素Oligosaccharide 52.7±7.1 39.2abAB 18.8±35.4 3.04±0.69 132.62
95%超敏蛋白原粉95% harpin protein 39.3±4.9 26.8bAB 46.1±18.1 2.87±0.69 121.36
几丁聚糖Chitosan 45.3±0.9 30.5bAB 40.2±12.4 2.98±0.29 114.81
宁南霉素Ningnanmycin 53.3±11.1 37.7abAB 26.9±14.6 3.18±1.31 124.17
海藻甲克素Seaweed 46.0±5.3 32.8bAB 32.4±30.1 2.11±0.74 57.67
VBa植物疫苗VBa plant vaccine 60.7±12.9 44.3abAB 13.2±23.3 1.77±0.69 24.13
甲噻·链蛋白Methiadinil+plant activator protein 46.7±11.6 30.8bAB 41.6±16.9 1.94±0.71 52.38
菌核净Dimetachlone 40.7±4.4 25.0bB 50.0±13.0 3.91±0.33 230.39
清水CK 76.7±4.4 53.2aA 0.0 2.71±1.14

Table 2

Control effects and yield increase of inducers against Sclerotinia sclerotiorum (2019)"

药剂
Fungicide
发病率
Incidence (%)
病情指数
Disease index
平均防效
Average control effect (%)
小区产量
Plot yield (kg)
较对照增产
Yield increase compared with CK (%)
3%超敏蛋白3% harpin protein 50.6±6.2 32.1bB 52.7±4.5aA 1.42±0.14 86.86
几丁聚糖Chitosan 42.3±11.8 32.1bB 51.9±11.8aA 1.36±0.23 77.88
维大利VdAL 78.5±2.7 44.8bAB 33.7±3.6abA 0.99±0.23 30.18
井冈霉素Jingangmycin A 57.4±13.6 45.0bAB 34.1±10.4abA 0.68±0.13 -11.10
蛇床素Cnidiadin 64.0±11.2 47.6bAB 30.1±18.3abAB 1.14±0.57 49.02
菌核净Dimetachlone 58.5±5.0 30.4bB 54.3±7.1aA 1.45±0.21 90.04
清水CK 68.6±9.6 67.4aA 0.0cB 0.76±0.19

Table 3

Control effects of different doses of hypersensitivity protein on sclerotinia sclerotiorum"

药剂
Fungicide
发病率
Incidence (%)
病情指数
Disease index
平均防效
Average control effect (%)
小区产量
Plot yield (kg)
较对照增产
Yield increase compared with CK (%)
超敏蛋白
Harpin protein
365g/hm2 39.9±7.1bB 12.7cC 70.8±6.2 5.57±0.47 46.75
317g/hm2 34.0±1.3bB 13.5cBC 68.3±2.2 5.62±1.01 48.11
267g/hm2 45.0±7.3bB 27.8bB 35.5±15.1 4.76±0.02 25.40
菌核净Dimetachlone 37.0±7.3bB 16.0cBC 62.2±7.3 4.95±0.96 30.46
清水CK 81.0±0.7aA 42.8aA 0.0 3.79±0.71

Table 4

Effects of different application periods on control effects"

药剂
Fungicide
施药时期
Application period
发病率
Incidence (%)
病情指数
Disease index
平均防效
Average control effect (%)
小区产量
Plot yield (kg)
较对照增产
Yield increase compared with CK (%)
超敏蛋白Harpin protein 种子包衣处理 71.8±7.4 56.8abAB 15.6±13.2 0.68±0.11 -10.37
苗期、中耕期 74.5±17.7 54.6abAB 20.8±24.6 1.17±0.30 52.98
现蕾期、始花期 50.6±6.2 32.1cB 52.7±4.5 1.42±0.14 86.92
超敏蛋白+磷酸二氢钾+硅酸钾
Harpin protein+KDP+potassium silicate
65.2±7.5 47.2bcAB 30.4±5.8 0.90±0.17 18.05
菌核净Dimetachlone 58.5±5.0 30.4cB 54.3±7.1 1.45±0.21 90.12
清水CK 68.6±9.6 67.3aA 0.0 0.76±0.19
[1] 张海洋, 李海燕, 孟庆林, 等. 不同杀菌剂对向日葵菌核病的田间防治效果. 作物杂志, 2020(4):202-205.
[2] 帅正彬, 胡慧敏, 柴丹, 等. 植物诱抗剂的应用研究进展. 四川农业科技, 2020(9):35-37,48.
[3] 马瑞, 芮凯, 罗激光, 等. 6种植物诱抗剂对槟榔黄化病的防控效果. 中国热带农业, 2021(3):41-43,7.
[4] 徐明月, 马瑞, 田威, 等. 新型植物免疫诱抗剂对槟榔黄化病的田间防效及最佳配比筛选. 农药科学与管理, 2021, 42(7):39-43.
[5] 党海月, 张妮妮, 朱明旗, 等. 阿泰灵对苹果锈果类病毒病田间防效及机制研究. 西北农业学报, 2022, 31(1):123-128.
[6] 王胤, 梁铁双, 贾鑫慧, 等. 植物免疫诱抗剂对黄瓜生长和产量的影响. 蔬菜, 2021(10):21-24.
[7] 国淑梅, 于晓野, 曲玉阳, 等. 植物诱抗剂对设施番茄生长及产量的影响. 东北农业科学, 2021, 46(2):66-69,93.
[8] 吴林娜, 刘梅, 李兴红. 多糖的生物活性及其在蔬菜中的应用. 蔬菜, 2021(5):32-38.
[9] 蒋承耿, 张崇德, 龙友华, 等. 4种诱抗剂对烟草叶枯病的诱抗效果. 贵州农业科学, 2021, 49(5):47-51.
[10] 李文志, 莫飞旭, 龙友华, 等. 4种诱抗剂诱导烟草抗叶枯病的效果. 农药, 2021, 60(10):765-770.
[11] 刘雪锋. BABA、MeJA及BTH诱导向日葵抗菌核病的研究&马铃薯NPR1基因的克隆及其表达载体构建. 呼和浩特:内蒙古农业大学, 2013.
[12] 张海洋, 李海燕, 孟庆林, 等. 啶酰菌胺对向日葵核盘菌生物活性的影响. 农学学报, 2021, 11(1):71-74,90.
doi: 10.11923/j.issn.2095-4050.cjas20191000226
[1] Zhang Haiyang, Li Haiyan, Meng Qinglin, He Chaoqun, Liu Shuqing. Effects of Different Fungicides on Field Control of Sunflower Sclerotinia Rot [J]. Crops, 2020, 36(4): 202-205.
[2] Yaohai Yue,Ming Lu,Jianxin Zhang,Yingjie Ma,Xudong Zhou,Wanqing Zhao,Shaoping Wang,Zhijun Zhang,Wenguo Liu. The Breeding of Jiyou 101 Haploid Inducer with High Frequency Parthenogenesis in Maize [J]. Crops, 2017, 33(3): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!