Crops ›› 2021, Vol. 37 ›› Issue (6): 9-14.doi: 10.16035/j.issn.1001-7283.2021.06.002

Previous Articles     Next Articles

Advances in Cold Plasma Treatment Effects on Crop Seeds

Song Jing1(), Cen Huifang1,2, Liu Huayue1, Wang Hui1, Zhang Yunwei1()   

  1. 1College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
    2College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2021-01-13 Revised:2021-07-08 Online:2021-12-15 Published:2021-12-16
  • Contact: Zhang Yunwei E-mail:songjing@cau.edu.cn;zywei@cau.edu.cn

Abstract:

Cold plasma treatment, as an environmental-friendly, simple-operation, and high-safety modern agricultural physical technique, possesses high research value and great application prospects. In this review, we summarized the properties of cold plasma under different pressure and discharge methods combinations, research process and outlook of the effect of cold plasma on crop seeds. Cold plasma treatment mainly changed seed coat structures, increased the level of seed metabolism and improved the production performance of crops such as phenotypes and yields. To some extent, cold plasma also improved the resistance of plants. However, most of the existing researches were focused on phenotypic and physiological aspects of cold plasma treatment. Figuring out the mechanism of cold plasma treatment still need further study. Atmospheric and room temperature plasma (ARTP) is the latest type of cold plasma source that has been applied in recent years, with more gentle and controllable operating conditions and a more stable and efficient treatment effect. We believe that in the future, conventional cold plasma and ARTP technique will be more widely used in improving agronomic characteristics in crop cultivation and promoting the overall quality of crops.

Key words: Cold plasma, Atmospheric and room temperature plasma (ARTP), Seeds treatment

Table 1

Generalization and comparison of properties and treatment effects of different cold plasma"

项目
Item
非常压冷等离子体
Non-atmospheric
pressure cold plasma
传统常压冷等离子体
Traditional atmospheric
pressure cold plasma
常压室温冷等离子体(ARTP)
Atmospheric and room
temperature plasma
主要产生方式[6,7]
Mainly produce way
射频放电
辉光放电
介质阻挡放电
大气压介质阻挡放电
大气压辉光放电
大气压射频辉光放电

设备及操作特点
Characteristics of
equipment and operation
工作电压高,难以获得持续稳定的放电;局部温度易过高,产生的冷等离子体稳定性略差;需创造真空环境,操作较繁琐。 处理设备结构简单,无需真空系统,成本低;放电均匀稳定,操作简便,安全性高。
室温放电,作用条件温和;设备及操作简单,安全性及可控性高。
处理时间Processing time 数秒至数分钟内 数分钟至数十分钟
作用机理
Mechanism


活性粒子与细胞内带电离子互作,被吸收部分电子振动并转化为热能,生物大分子由基态跃迁到激发态,对植物种子或组织起到激活作用[18];不改变基因序列,诱导植物产生表观遗传变异[5]

高能活性粒子造成遗传物质损伤、细胞膜通透性和蛋白结构的改变等;细胞启动SOS修复机制产生错配位点,形成稳定遗传的突变[35,36]
处理效应
Effect of treatment
种子萌发及生长
Seed germination
and growth
改善种子表面粗糙度及湿润性,提高种子发芽率、生长势等萌发特性,恢复老化种子活力[8];影响幼苗生长状态及成株的表型,提高产量。 提高种子发芽势、生长势、植株生长、产量及品质;促进非健康种子生理机能的恢复[21,22,23,24,25,26,27,28,29,30,31,32,33]
提高种子发芽势、发芽率,促进种子萌发;提高幼苗生物量、植株生长及产量[37,38,39,40,41]
生理生化
Physiology and
biochemistry
改善相应生理指标;提高次生代谢物含量[27,28,29,30],改善作物品质。

提高生理指标;促进物质转运、提高抗氧化防御系统酶活性和相关物质的含量等[33],减轻盐胁迫、重金属胁迫等逆境胁迫负效应[31,32] 提高药用作物有效次生代谢物含量[38];提高盐胁迫下植物种子及幼苗抗性[39,40]等。
[1] 邵长勇, 王德成, 刘亮东, 等. 冷等离子体种子播前处理技术研究动态及展望. 中国种业, 2014(12):1-4.
[2] 王伟宗, 荣命哲, 吴翊, 等. 平衡态与非平衡态等离子体物性参数计算模型研究. 高压电器, 2010, 46(7):41-45.
[3] 王利娟. 等离子体概念、分类及基本特性. 宜宾学院学报, 2009, 9(6):41-43.
[4] 张雪, 张晓菲, 王立言, 等. 常压室温等离子体生物诱变育种及其应用研究进展. 化工学报, 2014, 65(7):2676-2684.
[5] 王静宇, 陈晓慧, 赖钟雄. 植物表观遗传修饰的分子机制及其生物学功能. 热带作物学报, 2020, 41(10):2099-2112.
[6] 石峰, 王昊. 气体放电等离子体及应用的研究进展. 真空与低温, 2018, 24(2):80-85.
[7] Nalwa C, Thakur A K. Seed quality enhancement through plasma treatment:a review. Indian Journal of Ecology, 2018, 45(4):814-821.
[8] 张波, 邵汉良. 冷等离子体技术装备在作物种子改良中的应用研究. 农机化研究, 2014, 36(7):211-215.
[9] 张娜, 许峰, 沈剑, 等. 冷等离子体种子处理技术在小麦上的应用效果研究. 现代农业科技, 2018(21):8-10.
[10] 李玲, 申民翀, 李建刚, 等. 冷等离子体种子处理对油料作物种子萌发及幼苗生长的影响. 江西农业学报, 2015, 27(8):1-5.
[11] 马玉婷, 米敏, 白梅梅, 等. 冷等离子体处理对紫花苜蓿种子萌发和幼苗MDA含量的影响. 安徽农业科学, 2020, 8(48):1-5.
[12] Nalwa C, Thakur A K, Vikram A, et al. Effect of cold plasma treatment and priming in bell pepper (Capsicum annuum L.). International Journal of Bio-resource and Stress Management, 2017, 8(4):535-538.
doi: 10.23910/IJBSM
[13] Bormashenko E, Grynyov R, Bormashenko Y, et al. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Scientific Reports, 2012, 2(1):383-420.
doi: 10.1038/srep00383
[14] Saberi M, Modarres-Sanavy S, Zare R, et al. Amelioration of photosynthesis and quality of wheat under non-thermal radio frequency plasma treatment. Scientific Reports, 2018, 8(1):11655.
doi: 10.1038/s41598-018-30200-7 pmid: 30076394
[15] Mildaziene V, Pauzaite G, Naucienė Z, et al. Pre-sowing seed treatment with cold plasma and electromagnetic field increases secondary metabolite content in purple coneflower (Echinacea purpurea) leaves. Plasma Processes and Polymers, 2018, 15(2):e1700059.
[16] Mildažienė V, Aleknavičiūtė V, Žūkienė R, et al. Treatment of common sunflower (Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance,seedling development and leaf protein expression. Scientific Reports, 2019, 9(8):377-389.
doi: 10.1038/s41598-018-36868-1
[17] Mujahid Z, Tounekti T, Khemira H. Cold plasma treatment to release dormancy and improve growth in grape buds:a promising alternative to natural chilling and rest breaking chemicals. Scientific Reports, 2020, 10(1):2667.
doi: 10.1038/s41598-020-59097-x pmid: 32060299
[18] 邵汉良. 冷等离子体的真空紫外线与植物种子中生物大分子的作用效应与机制. 全国等离子体科学技术会议暨全国等离子体医学研讨会, 2013: 1.
[19] Hou Y M, Dong X Y, Yu H, et al. Disintegration of biomacromolecules by dielectric barrier discharge plasma in helium at atmospheric pressure. IEEE Transactions on Plasma Science, 2008, 36(4):1633-1637.
doi: 10.1109/TPS.2008.927630
[20] Pérez-Pizá M C, Prevosto L, Grijalba P E, et al. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon, 2019, 5(4):e01495.
doi: 10.1016/j.heliyon.2019.e01495
[21] 王敏, 陈青云, 陈光良, 等. 大气压等离子体处理对生菜种子萌发和生长发育的影响. 华北农学报, 2007(6):108-113.
[22] 王敏, 杨思泽, 陈青云, 等. 大气压等离子体处理对黄瓜种子萌发及幼苗生长的影响. 农业工程学报, 2007, 23(2):195-200.
[23] 周筑文, 黄燕芬, 邓明森, 等. 大气压等离子体处理茄子种子对植株生长和产量的影响. 中国蔬菜, 2010(4):62-66.
[24] Zhou Z, Huang Y, Yang S, et al. Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agricultural Sciences, 2011, 2(1):23-27.
doi: 10.4236/as.2011.21004
[25] 周筑文, 黄燕芬, 杨思泽, 等. 大气压等离子体处理对番茄生长发育及产量与品质的影响. 安徽农业科学, 2010, 38(2):1085-1088.
[26] 吕晓桂, 王鹏, 利民, 等. 大气压氩气冷等离子体射流处理对芥菜种子发芽率及根长的影响. 核聚变与等离子体物理, 2019, 39(2):188-192.
[27] 王佳琪, 崔东洁, 阴悦, 等. 大气压低温等离子体处理对拟南芥幼苗抗氧化系统的影响. 植物生理学报, 2020, 56(3):423-430.
[28] Bußler S, Herppich W B, Neugart S, et al. Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’). Food Research International, 2015, 76:132-141.
doi: 10.1016/j.foodres.2015.03.045
[29] Mohammadzadeh-Shahir M, Noormohammadi Z, Farahani F, et al. The potential use of methyl jasmonate,putrescine and cold atmospheric plasma on genetic variability and seedling growth improvement in medicinal plant Catharanthus roseus L. cultivar. Industrial Crops and Products, 2019, 140:111601.
doi: 10.1016/j.indcrop.2019.111601
[30] Ghasempour M, Iranbakhsh A, Ebadi M, et al. Seed priming with cold plasma improved seedling performance,secondary metabolism,and expression of deacetylvindoline O-acetyltransferase gene in Catharanthus roseus. Contributions to Plasma Physics, 2020, 60(4):e201900159.
[31] 邓敏, 赵玲, 滕应, 等. 冷等离子体种子处理对铜胁迫下小麦种子萌发与幼苗生长的影响. 农业环境科学学报, 2018, 37(12):2669-2677.
[32] 萨拉. 引发和冷等离子体处理通过生理、分子及代谢调控提高水稻种子的抗逆性. 杭州:浙江大学, 2017.
[33] 童家赞. 空气等离子体预处理提高穿心莲种子活力的研究. 广州:广州中医药大学, 2012.
[34] 王华博, 孙文廷, 李和平, 等. 大气压下氦/氮射频放电冷等离子体特性. 清华大学学报(自然科学版), 2007(3):389-392.
[35] Marcus S C, Evans M D, Dizdaroglu M, et al. Oxidative DNA damage:mechanisms,mutation,and disease. The FASEB Journal, 2003, 17(10):1195-1214.
doi: 10.1096/fsb2.v17.10
[36] Gaunt L F, Beggs C B, Georghiou G E. Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure:a review. IEEE Transactions on Plasma Science, 2006, 34(4):1257-1269.
doi: 10.1109/TPS.2006.878381
[37] 骆美洁, 赵衍鑫, 宋伟, 等. 常压室温等离子体对玉米种子及花粉萌发的影响. 分子植物育种, 2016, 14(5):1262-1267.
[38] 许言. 常压室温等离子体对怀牛膝和昆仑雪菊辐照的生物学效应. 新乡:河南师范大学, 2018.
[39] 董亚茹, 赵东晓, 陈传杰, 等. 常压室温等离子体对NaCl胁迫下二月兰种子萌发和幼苗生长的影响. 山东农业科学, 2017, 49(12):37-40.
[40] 赵东晓, 杜建勋, 董亚茹, 等. 常压室温等离子体对NaCl胁迫下胡麻种子萌发及幼苗生理特性的影响. 核农学报, 2018, 32(8):1466-1476.
[41] 黄忠兴, 何慧怡, 樊丽娜, 等. ARTP诱变甘蔗胚性愈伤组织以提高其抗草甘膦能力研究初报. 甘蔗糖业, 2020(2):21-26.
[42] 徐欢欢, 张红兵, 李会宣, 等. 常压室温等离子体技术在微生物诱变中的应用进展. 生物技术进展, 2020, 10(4):358-362.
[43] Wang L Y, Huang Z L, Li G, et al. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. Journal of Applied Microbiology, 2010, 108(3):851-858.
doi: 10.1111/j.1365-2672.2009.04483.x pmid: 19735332
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!