Crops ›› 2024, Vol. 40 ›› Issue (4): 172-179.doi: 10.16035/j.issn.1001-7283.2024.04.022
Previous Articles Next Articles
Feng Xiaomin1(), Gao Xiang1, Lü Huiqing1, Hao Zhiping1, Zhang Li1, Zhou Zhongyu1, Zhang Yongqing2(
)
[1] | 邢媛, 贾馥翠, 陈凌, 等. 模拟干旱胁迫下黍稷资源抗旱性评价. 山西农业科学, 2022, 50(7):965-972. |
[2] | 王荣荣, 王海琪, 蒋桂英, 等. 2个不同抗旱性小麦品种耗水特征及根系生理特性对开花期干旱的响应. 水土保持学报, 2022, 36(4):253-264. |
[3] | 沈业杰, 尹光华, 佟娜, 等. 玉米抗旱相关生理生化指标研究及品种筛选. 干旱区资源与环境, 2012, 26(4):176-180. |
[4] | 魏曼娜. 干旱胁迫下不同大豆品种根系性状和光合生理研究. 沈阳: 沈阳农业大学, 2016. |
[5] | 王涛. 覆膜处理对糜子农田土壤水温变化及生长发育的影响. 阿拉尔: 塔里木大学, 2022. |
[6] |
王倩, 张立媛, 许月, 等. 黍稷高基元EST-SSR标记开发及200份核心种质资源遗传多样性分析. 作物学报, 2023, 49(8):2308-2318.
doi: 10.3724/SP.J.1006.2023.24201 |
[7] |
王倩, 董孔军, 薛亚鹏, 等. 糜子核心种质成株期抗旱性鉴定评价与抗旱种质筛选. 中国农业科学, 2023, 56(21):4163-4174.
doi: 10.3864/j.issn.0578-1752.2023.21.003 |
[8] |
杨清华, 王洪露, 冯佰利. 糜子品质研究进展与展望. 植物学报, 2023, 58(1):22-33.
doi: 10.11983/CBB22180 |
[9] | 李芮, 刘晓宇, 刘乐, 等. 糜子叶片表皮蜡质的组分及晶体结构分析. 干旱地区农业研究, 2020, 38(6):7-12. |
[10] |
朱天琦, 刘晓静, 张晓玲. 氮营养调控对紫花苜蓿根系形态及其解剖结构的影响. 草地学报, 2016, 24(6):1290-1295.
doi: 10.11733/j.issn.1007-0435.2016.06.020 |
[11] | 张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 1990. |
[12] | 杨秉耀, 陈新芳, 刘向东, 等. 水稻不同品种叶表面硅质细胞的扫描电镜观察. 电子显微学报, 2006, 25(2):146-150. |
[13] | Zhuo W, Fang S B, Wu D, et al. Integrating remotely sensed water stress factor with a crop growth model for winter wheat yield estimation in the North China Plain during 2008-2018. The Crop Journal, 2022, 10(5):1470-1482. |
[14] | 傅晓艺, 王红光, 刘志连, 等. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选. 作物杂志, 2023(4):224-229. |
[15] | Fageria N K. Influence of dry matter and length of roots on growth of five field crops at varying soil zinc and copper levels. Journal of Plant Nutrition, 2005, 27(9):1517-1523. |
[16] | 庄晔, 葛嘉雪, 汪孝国, 等. 干旱胁迫及复水对烤烟生长及其生理特性的影响. 中国烟草学报, 2022, 28(4):48-58. |
[17] | 刘巧玲, 李王成, 贾振江, 等. 干旱胁迫下植物根系适应性机制研究进展与热点分析. 江苏农业科学, 2023, 51(9):34-40. |
[18] |
张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51(5):868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006 |
[19] | Li Q Q, Dong B D, Qiao Y Z, et al. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agriculture Water Manage, 2011, 97(10):1676-1682. |
[20] | 赵阳, 王树声, 张亚丽, 等. 增加烟草一级和二级侧根是抵御干旱的生理机制. 植物营养与肥料学报, 2017, 23(2):548-555. |
[21] | 丁国华, 白良明, 曹良子, 等. 干旱胁迫对寒地水稻不同种质资源萌发特性及幼苗生长的影响. 种子, 2020, 39(11):38-43. |
[22] | 姬文琴, 杨智, 汪辉, 等. 不同生育阶段燕麦对干旱胁迫的响应. 中国草地学报, 2021, 43(1):58-67. |
[23] | 修俊杰, 刘学良. 水氮互作对花针期花生生理特性及生长的影响. 作物杂志, 2023(6):174-180. |
[24] |
时晴晴, 李炎, 王仰仁. 玉米器官生长相关性对水分胁迫的影响. 节水灌溉, 2023(10):11-17.
doi: 10.12396/jsgg.2022271 |
[25] | 王荣荣, 王海琪, 蒋桂英, 等. 2个不同抗旱性小麦品种耗水特征及根系生理特性对开花期干旱的响应. 水土保持学报, 2022, 36(4):253-264. |
[26] | Rejeth R, Manikanta C L, Beena R, et al. Water stress mediated root trait dynamics and identification of microsatellite markers associated with root traits in rice (Oryza sativa L). Physiology and Molecular Biology of Plants, 2020, 26(1):1225-1236. |
[27] |
李帅, 赵国靖, 徐伟洲, 等. 白羊草根系形态特征对土壤水分阶段变化的响应. 草业学报, 2016, 25(2):169-177.
doi: 10.11686/cyxb2015171 |
[28] | Shan Z Y, Jiang Y M, Li H Q, et al. Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress. BMC Genomics, 2020, 21(1):96. |
[29] | 张帆, 白羽, 王嘉欢, 等. 黑芝麻叶片表皮蜡质成分及含量研究. 西北农业学报, 2015, 24(11):107-112. |
[30] | Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.). Journal of Plant Physiology, 2007, 164(9):1134. |
[31] | 张盼盼, 慕芳, 宋慧, 等. 糜子叶片解剖结构与其抗旱性关联研究. 农业机械学报, 2013, 44(5):119-124. |
[32] | Xu Z Q, Ma J J, Lei P, et al. Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L. Scientific Reports, 2020, 10(1):252. |
[33] | Barnard R L, Osborne C A, Firestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 2013, 7(11):2229-2241. |
[34] | Yuan Y H, Liu L, Gao Y B, et al. Comparative analysis of drought-responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance. Industrial Crop and Products, 2022, 177:114498. |
|