Crops ›› 2023, Vol. 39 ›› Issue (6): 135-142.doi: 10.16035/j.issn.1001-7283.2023.06.019

Previous Articles     Next Articles

Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean

Zhou Xu(), He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue()   

  1. College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2022-02-19 Revised:2023-05-08 Online:2023-12-15 Published:2023-12-15

Abstract:

In order to explore the theory of water-saving irrigation and high yield of soybean in Heilongjiang province, the effects of seedling stage (V1) water stress and rehydration treatment on the antioxidant characteristics of leaves and yield of Suinong 26 (drought sensitive) and Heinong 54 (drought resistant) were studied. The results showed that, compared with the control (normal water supply, 70% of field capacity), water stress and rehydration at V1 stage could improve the activity of antioxidant enzymes in leaves. Among them, the activity of superoxide dismutase in Suinong 26 with the treatment of rehydration after 15d of V1 stage water control and 60% of field capacity (T1) increased by 35.11%, and that in Heinong 54 with treatment of rehydration after 15d of V1 stage water control and 50% of field capacity (T2) increased by 32.40%. At the same time, different degrees of water stress at V1 stage led to the decrease of dry matter accumulation in various organs of soybean plant, but increased rapidly after rehydration, which was higher than that of the control, resulting in compensation effect. The results of yield measurement showed that, moderate water deficit and rehydration at V1 stage were conducive to the increase of soybean yield. In 2020, the yield of Suinong 26 with T1 treatment was the highest, 30.10% higher than the control, and that of Heinong 54 with T2 treatment was the highest. The change trend of yield in 2021 was consistent with that in 2020. Therefore, the yield of soybean can be improved by controlling water and rewatering at V1 stage.

Key words: Antioxidant properties, Enzyme activity, Yield, Water stress

Fig.1

Effects of different water stress and rehydration treatment on SOD activity of soybean leaves at seedling stage Different lowercase letters indicate significant difference (P < 0.05) between different treatments of the same factor. The same below"

Fig.2

Effects of different water stress and rehydration treatment on POD activity of soybean leaves at seedling stage"

Fig.3

Effects of different water stress and rehydration treatment on CAT activity in soybean leaves at seedling stage"

Fig.4

Effects of different water stress and rehydration treatment on MDA content of soybean leaves at seedling stage"

Table 1

Effects of different water stress and rehydration treatment on soybean dry matter accumulation at seedling stage g"

时期
Stage
处理
Treatment
茎Stem 叶Blade 荚皮Pod skin 籽粒Grain
S H S H S H S H
复水前
Before rehydration
CK 2.01±0.13b 2.29±0.03a 2.42±0.15b 2.56±0.06a
T1 2.35±0.08a 2.06±0.06b 2.70±0.10a 2.38±0.06b
T2 1.20±0.03c 1.01±0.07c 1.51±0.04c 1.35±0.05c
T3 1.13±0.03c 0.72±0.02d 1.33±0.04d 0.90±0.03d
复水后
After rehydration
CK 2.92±0.08b 4.00±0.07a 3.10±0.07b 3.78±0.07a
T1 3.10±0.07a 3.67±0.03b 3.38±0.06a 3.79±0.04a
T2 2.26±0.08c 1.82±0.07c 2.67±0.03c 2.18±0.08b
T3 1.44±0.06d 0.76±0.03d 1.79±0.05d 0.91±0.07c
盛花期
Full flowering
CK 5.44±0.09a 5.85±0.13a 5.01±0.05b 5.63±0.09a
T1 5.28±0.05b 5.53±0.05b 5.35±0.07a 5.22±0.10b
T2 3.98±0.07c 4.83±0.07c 4.44±0.05c 4.76±0.04c
T3 2.41±0.05d 2.79±0.02d 2.88±0.05d 3.20±0.08d
结荚期
Pod setting
CK 11.07±0.07a 10.20±0.05a 6.63±0.03a 8.05±0.07c 5.49±0.04a 3.19±0.19a 0.22±0.20ab
T1 8.03±0.10b 7.47±0.33b 6.37±0.08b 8.75±0.07a 4.94±0.01b 3.24±0.06a 0.36±0.02a 0.03±0.05a
T2 6.18±0.02c 6.44±0.10c 5.69±0.11c 8.49±0.06b 2.42±0.02c 1.72±0.09b 0.17±0.01ab
T3 5.58±0.03d 5.42±0.05d 6.78±0.23a 7.44±0.20d 0.86±0.03d 1.46±0.10c 0.04±0.06b
鼓粒期
Grain bulging
CK 12.88±0.65a 10.61±0.28a 9.15±0.03a 9.06±0.06a 8.57±0.15a 5.73±0.04b 10.44±0.12a 9.74±0.43a
T1 10.22±0.59b 8.73±0.14b 7.25±0.05b 8.38±0.08b 7.15±0.10b 6.03±0.12a 8.69±0.04b 8.83±0.17b
T2 7.46±0.06c 6.51±0.05d 5.83±0.09c 6.33±0.08c 6.70±0.11c 4.73±0.19d 8.20±0.27b 5.07±0.08c
T3 7.73±0.03c 8.36±0.13c 5.87±0.05c 6.15±0.10d 5.82±0.05d 5.21±0.08c 4.75±0.49c 5.36±0.16c
完熟期
Maturity
CK 12.94±0.21a 10.81±0.15a 10.26±0.34a 9.29±0.11a 8.71±0.14a 8.03±0.19a 13.40±0.20b 12.76±0.07bc
T1 10.27±0.22b 8.77±0.19b 7.63±0.14b 8.49±0.15b 7.24±0.17b 7.37±0.34b 14.68±0.20a 12.98±0.06ab
T2 7.63±0.21c 6.63±0.15c 5.79±0.13c 6.57±0.15c 6.76±0.18c 5.94±0.48c 12.84±0.17c 13.19±0.06a
T3 7.78±0.16c 8.66±0.19b 5.73±0.18c 6.34±0.11d 5.90±0.16d 5.44±0.31d 12.75±0.30c 12.55±0.61d

Table 2

Effects of different water stress and rehydration treatment on soybean yield and its components at seedling stage"

年份
Year
品种
Variety
处理
Treatment
节数
Number of sections
单株荚数
Pods per plant
单株荚重
Pod weight per plant (g)
单株粒数
Grains per plant
单株产量
Yield per plant (g)
2020 S CK 16.70±0.67a 19.10±1.20b 3.94±0.36b 46.70±6.02b 8.97±0.72b
T1 17.00±0.67a 25.90±2.23a 5.46±0.38a 65.80±2.25a 12.84±0.48a
T2 15.40±0.70b 19.00±1.76b 3.75±0.34bc 45.90±2.64b 8.70±0.29b
T3 14.70±0.67c 17.70±1.16b 3.50±0.27c 39.90±2.38c 7.17±0.31c
H CK 16.40±0.70b 32.20±1.99b 4.82±0.36b 56.00±2.71c 11.94±0.50b
T1 17.00±0.82ab 30.70±0.67c 4.88±0.23b 62.50±1.58b 10.56±0.55c
T2 17.40±0.97a 33.80±1.87a 5.57±0.22a 70.80±1.75a 12.95±0.46a
T3 15.30±0.82c 24.40±0.97d 4.19±0.18c 44.30±1.83d 8.60±0.55d
2021 S CK 16.67±0.87ab 32.22±1.20a 8.71±0.14a 67.89±2.93b 13.40±0.20b
T1 17.11±0.93a 33.44±2.07a 7.24±0.17b 71.33±3.28a 14.68±0.20a
T2 16.00±1.12ab 28.67±1.22b 6.76±0.18c 65.89±2.32bc 12.84±0.17c
T3 15.78±0.97b 27.78±1.79b 5.90±0.16d 64.33±2.65c 12.75±0.30c
H CK 15.44±0.53a 26.78±2.22a 8.03±0.19a 44.78±2.68c 12.76±0.07bc
T1 15.67±0.71a 27.00±2.69a 7.37±0.34b 49.33±2.50b 12.98±0.06ab
T2 16.00±0.50a 29.00±1.22b 5.94±0.48c 55.44±1.74a 13.19±0.06a
T3 14.67±0.50b 23.22±1.56c 5.44±0.31d 42.11±1.17d 12.55±0.61c
[1] Arnao M B, Hernández-Ruiz J. The physiological function of melatonin in plants. Plant Signaling and Behavior, 2006, 1(3):89-95.
doi: 10.4161/psb.1.3.2640
[2] 栾立明, 郭庆海. 中国大豆产业国际竞争力现状与提升途径. 农业经济问题, 2010, 31(2):99-103.
[3] 李良皓, 韩晓增, 李海波, 等. 黑土区不同施肥对大豆耗水量及水分利用效率的影响. 土壤通报, 2009, 40(3):601-605.
[4] Blask D E, Dauchy R T, Sauer L A. Putting cancer to sleep at night-The neuroendocrine/circadian melatonin signal. Endocrine, 2005, 27:179-188.
doi: 10.1385/ENDO:27:2
[5] 马亮. 区域高效节水灌溉技术推广现状与对策研究. 居舍, 2020(3):189,194.
[6] 季永辉. 农田水利工程中的节水灌溉现状和改革研究. 四川水泥, 2020(1):110.
[7] 王利彬. 大豆苗期干旱和高温胁迫应答机制研究及关键转录因子的筛选. 哈尔滨: 东北农业大学, 2018.
[8] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000:267-268.
[9] 中国科学院上海植物生理研究所, 上海市植物生理学会. 现代植物生理学实验指南. 北京: 科学出版社, 1999:127.
[10] 张红萍, 牛俊义, 轩春香, 等. 干旱胁迫及复水对豌豆叶片脯氨酸和丙二醛含量的影响. 甘肃农业大学学报, 2008, 43(5):50-54.
[11] 王利彬, 祖伟, 董守坤, 等. 干旱程度及时期对复水后大豆生长和代谢补偿效应的影响. 农业工程学报, 2015, 31(11):150-156.
[12] 张微微, 黄晓林, 赵霞, 等. 棉花酶促抗氧化系统对逆境胁迫生理响应的研究进展. 中国农学通报, 2009, 25(19):108-112.
[13] 周雪英. 不同倍性小麦对旱后复水的生理生态响应. 杨凌: 西北农林科技大学, 2007.
[14] 王磊, 胡楠, 张彤, 等. 干旱和复水对大豆(Glycine max)叶片光合及叶绿素荧光的影响. 生态学报, 2007, 27(9):3630- 3636.
[15] 李敏敏, 袁军伟, 韩斌, 等. 干旱和复水对两种葡萄砧木叶片光合和叶绿素荧光特性的影响. 干旱地区农业研究, 2019, 37 (1):221-226.
[16] 秦荣荣, 王晓凌. 根系深度对旱后复水玉米补偿性生长的影响. 生态学杂志, 2018, 37(11):3291-3297.
[17] 肖凡, 蒋景龙, 段敏. 干旱和复水条件下黄瓜幼苗生长和生理生化的响应. 南方农业学报, 2019, 50(10):2241-2248.
[18] 李琬. 干旱对大豆根系生育的影响及灌溉缓解效应研究进展. 草业学报, 2019, 28(4):192-202.
doi: 10.11686/cyxb2018222
[19] 魏清江, 冯芳芳, 马张正, 等. 干旱复水对柑橘幼苗叶片光合、叶绿素荧光和根系构型的影响. 应用生态学报, 2018, 29(8):2485-2492.
doi: 10.13287/j.1001-9332.201808.028
[20] 沈融, 章新建, 古丽娜, 等. 亏缺灌溉对大豆根系生长和养分积累及产量的影响. 大豆科学, 2011, 30(1):62-66.
[21] 王利彬. 大豆对干旱胁迫响应及复水效应的研究. 哈尔滨: 东北农业大学, 2013.
[1] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[2] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[3] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[4] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[5] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[6] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[7] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[8] Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223.
[9] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[10] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[11] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[12] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[13] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[14] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[15] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!