Crops ›› 2020, Vol. 36 ›› Issue (4): 91-98.doi: 10.16035/j.issn.1001-7283.2020.04.013

Previous Articles     Next Articles

Study on Physicochemical Properties of Local Waxy Rice Varieties Yaxuenuo and Suyunuo from Taihu Lake Area

Zhu Zhengbin1(), Yang yong2, Feng Linhao2, Lu Yan2, Shen Xuelin1, Liu Qiaoquan2, Zhang Changquan2()   

  1. 1Suzhou Seed Management Station, Suzhou 215011, Jiangsu, China
    2Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2019-11-28 Revised:2020-05-07 Online:2020-08-15 Published:2020-08-11
  • Contact: Zhang Changquan E-mail:jielinren@126.com;cqzhang@yzu.edu.cn

Abstract:

In order to provide useful information for the subsequent utilization of local waxy rice germplasm resources, we evaluated the grain quality characteristics of four local waxy rice varieties (Yaxuenuo, Suyunuo, Hongkenuo and Baikenuo) from Taihu Lake region. Basic physical, chemical profiles and starch structure characteristics of four rice varieties were analyzed. The results showed that the Yaxuenuo and Suyunuo contained the highest total protein content and apparent amylose content. Flours and starch of Yaxuenuo and Suyunuo both exhibited an obvious low viscosity. The starch was isolated and analyzed by scanning electron micrographs. The results showed that the average size of starch was smaller in Yaxuenuo and Suyunuo, which might be an important reason for the low starch viscosity. The starch thermal properties was measured by differential scanning calorimetry thermal analyzer, and the data showed that starch from Yaxuenuo had the highest gelatinization curve and followed by Suyunuo. The crystal structure analysis showed that four waxy rice starch displayed a typical A-type crystal type, however, the long-range order and short-range orders structures of Yaxuenuo starch were the highest, followed by Suyunuo starch.

Key words: Waxy rice, Grain quality, Starch structure, Gelatinization temperature, Crystal structure

Table 1

The basic physicochemical properties of different waxy rice varieties"

品种
Variety
表观直链淀粉含量
Apparent amylose content (%)
胶稠度
Gel consistency (mm)
总淀粉含量
Total starch content (%)
总蛋白含量
Total protein content (%)
红壳糯Hongkenuo 1.7±0.1B 112.6±5.8A 73.98±2.5A 5.6±0.2C
白壳糯Baikenuo 1.8±0.1B 114.8±8.2A 74.12±3.1A 5.8±0.3C
苏御糯Suyunuo 2.8±0.5A 108.3±9.7A 76.17±1.3A 6.5±0.4B
鸭血糯Yaxuenuo 3.1±0.1A 112.4±8.5A 75.85±2.7A 8.2±0.2A

Fig.1

RVA profiles of rice flour (a) and starch (b) of different rice varieties"

Table 2

RVA pasting properties of rice flour and starch in different waxy rice varieties"

样品
Sample
峰值黏度
Peak viscosity
(cP)
热浆黏度
Hot paste
viscosity (cP)
崩解值
Breakdown
viscosity value (cP)
冷胶黏度
Cool paste
viscosity (cP)
消减值
Setback viscosity
value (cP)
峰值时间
Peak time
(min)
糊化温度
Pasting
temperature (℃)
红壳糯-F
Hongkenuo-F
1 550.00±12.73B 420.50±3.54B 1 129.50±9.19B 558.50±7.78B -991.50±4.95C 3.45±0.03B 67.65±0.08D
白壳糯-F
Baikenuo-F
1 614.50±12.03A 446.50±9.19A 1 168.00±2.83A 578.50±3.54A -1 036.00±8.49D 3.47±0.01B 68.53±0.03C
苏御糯-F
Suyunuo-F
945.00±8.49C 380.50±13.43C 564.50±4.95C 518.00±4.24C -427.00±4.24B 3.66±0.08A 70.45±0.49B
鸭血糯-F
Yaxuenuo-F
461.50±12.03D 139.00±4.24D 322.50±7.78D 218.50±3.54D -243.00±15.56A 3.76±0.03A 75.02±0.17A
红壳糯-S
Hongkenuo-S
1 315.00±12.73B 97.00±7.07B 1 218.00±19.80A 121.00±2.83A -1 194.00±15.56D 3.32±0.02C 68.40±0.14D
白壳糯-S
Baikenuo-S
1 342.00±15.56A 105.00±11.31A 1 237.00±4.24A 121.50±10.61A -1 220.50±4.95C 3.45±0.02B 70.08±0.05C
苏御糯-S
Suyunuo-S
812.50±13.44C 88.00±7.07C 724.00±6.36B 109.50±7.78B -703.50±5.66B 3.44±0.04B 70.69±0.29B
鸭血糯-S
Yaxuenuo-S
675.50±9.19D 70.00±4.24D 605.50±4.95C 84.00±4.24C -591.50±4.95A 3.69±0.06A 74.22±0.04A

Fig.2

Scanning electron microscope micrographs of cooked rice grain and purified starch granules of different waxy rice varieties a-d, e-h indicate the Hongkenuo, Baikenuo, Suyunuo and Yaxuenuo, respectively"

Fig.3

Differential scanning calorimetry curve of native starch and retrogradation starch of different waxy rice varieties"

Table 3

Comparison of the thermodynamic characteristics values of native starch and retrogradation starch from different waxy rice varieties"

样品Sample To (℃) Tp (℃) Tc (℃) ΔH (J/g)
红壳糯-G Hongkenuo-G 56.84±0.19C 64.35±0.07C 77.25±0.07C 10.11±0.03B
白壳糯-G Baikenuo-G 57.03±0.16C 64.34±0.06C 77.60±0.57C 10.28±0.14B
苏御糯-G Suyunuo-G 59.15±0.21B 67.15±0.21B 79.75±0.35B 10.66±0.26B
鸭血糯-G Yaxuenuo-G 62.15±0.09A 68.85±0.07A 83.10±0.48A 11.33±0.17A
红壳糯-R Hongkenuo-R 51.90±0.42A 57.05±0.21B 62.95±0.21B 1.15±0.15C
白壳糯-R Baikenuo-R 52.47±0.51A 58.40±0.42B 63.65±0.35B 1.70±0.34C
苏御糯-R Suyunuo-R 52.15±0.35A 59.90±0.42A 65.50±0.28A 3.26±0.23B
鸭血糯-R Yaxuenuo-R 51.70±0.28A 59.75±0.07A 66.05±0.21A 8.37±0.08A

Fig.4

X-ray diffractometer patterns (a) and FTIR spectra (b) of starch of different waxy rice varieties"

Table 4

Relative crystallinities X-ray diffractorneter patterns and FTIR spectra of starch from different waxy rice varieties (n=2)"

品种Variety 结晶度
Crystallinity (%)
短程有序度
Short-range order
红壳糯Hongkenuo 35.02±0.61C 0.84±0.02C
白壳糯Baikenuo 34.79±0.42C 0.83±0.01C
苏御糯Suyunuo 36.16±0.29B 0.90±0.01B
鸭血糯Yaxuenuo 37.24±0.36A 0.94±0.02A
[1] Tilman D, Balzer C, Hill J , et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(50):20260-20264.
[2] Feng F, Li Y J, Qin X L , et al. Changes in rice grain quality of indica and japonica type varieties released in China from 2000 to 2014. Frontiers in Plant Science, 2017,8:1863.
[3] Tian Z X, Qian Q, Liu Q Q , et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(51):21760-21765.
[4] 于梅梅, 陶权丹, 华杰 , 等. 香软米水稻的研究进展. 江苏农业科学, 2019,47(10):11-15.
[5] Manners D J . Recent developments in our understanding of amylopectin structure. Carbohydrate Polymers, 1989,11(2):87-112.
[6] Nakamura Y . Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue. Plant Cell Physiology, 2002,43(7):718-725.
[7] Cheetham N W H, Tao L P . Variation in crystalline type with amylose content in maize starch granules:an X-ray powder diffraction study. Carbohydrate Polymers, 1998,36(4):277-284.
[8] 满建民, 蔡灿辉, 严秋香 , 等. 红外光谱技术在淀粉粒有序结构分析中的应用. 作物学报, 2012,38(3):505-513.
[9] 贺晓鹏, 朱昌兰, 刘玲珑 , 等. 不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系. 作物学报, 2010,36(2):276-284.
[10] Li H Y, Gilbert R G . Starch molecular structure:The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018,195:9-17.
[11] 陆彦, 张晓敏, 祁琰 , 等. 不同透明度水稻籽粒横断面扫描电镜分析. 中国水稻科学, 2018,32(2):189-199.
[12] Zhang C Q, Zhu L J, Shao K , et al. Toward underlying reasons for rice starches having low viscosity and high amylose:physiochemical and structural characteristics. Journal of the Science of Food and Agriculture, 2013,93(7):1543-1551.
[13] Takeda Y, Maruta N, Hizukuri S , et al. Structure of indica rice starches (IR48 and IR64) having intermediate affinity for iodine. Carbohydrate Polymers, 1989,187(2):287-294.
[14] 舒庆尧, 吴殿星, 夏英武 , 等. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,3(1):25-29.
[15] Li Y, Shoemake C F, Ma J G , et al. Structure-viscosity relationships for starches from different rice varieties during heating. Food Chemistry, 2008,106(3):1105-1112.
[16] Cooke D, Gidley M J . Loss of crystalline and molecular order during starch gelatinisation:origin of the enthalpic transition. Carbohydrate Research, 1992,227:103-112.
[17] Sevenou O, Hill S E, Farhat I A , et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 2002,31(1/2/3):79-85.
[18] Cai J W, Man J M, Huang J , et al. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydrate Polymers, 2015,125:3544.
[19] 俞良 . 特种稻品种“鸭血糯”的应用价值及其标准化栽培技术. 上海农业科技, 2007(6):35-36.
[20] Yamanaka S, Nakamura I, Watanabe K N , et al. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theoretical and Applied Genetics, 2004,108(7):1200-1204.
[21] 范名宇, 王晓菁, 王旭虹 , 等. 稻米支链淀粉结构的研究进展. 中国水稻科学, 2017,31(2):124-132.
[22] Zhang C Q, Zhu J H, Chen S J , et al. Wx lv,the ancestral allele of rice waxy gene . Molecular Plant. 2019,12:1157-1166.
[23] 朱正斌, 戴华军, 夏肄锋 , 等. 播期和肥料运筹对水稻地方品种苏御糯产量和抗性的影响. 现代农业科技, 2017(1):15-17.
[1] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice [J]. Crops, 2020, 36(2): 1-8.
[2] Jie Wang,Bo Zeng,Cailin Lei,Zhichao Zhao,Jiulin Wang,Zhijun Cheng. Variety Analysis of Northern Rice Regional Trials in Recent 15 Years [J]. Crops, 2018, 34(1): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!