Crops ›› 2021, Vol. 37 ›› Issue (3): 106-113.doi: 10.16035/j.issn.1001-7283.2021.03.016

Previous Articles     Next Articles

Effects of Combined Application of Biochar-Based Fertilizer and Trichoderma harzianum on the Qualities of Flue-Cured Tobacco and Tobacco-Growing Soil

Wang Kun1(), Wei Yuewei1, Ji Xiaoming1(), Yun Fei1, Zou Kai2(), Long Zhun2   

  1. 1College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Hunan Tobacco Company Shaoyang City Company, Shaoyang 422200, Hunan, China
  • Received:2020-10-14 Revised:2020-12-04 Online:2021-06-15 Published:2021-06-22
  • Contact: Ji Xiaoming,Zou Kai E-mail:562477408@qq.com;xiaomingji@henau.edu.cn;15740341@qq.com

Abstract:

The effects of biochar-based fertilizer, Trichoderma harzianum, and the combination of the two on tobacco morbidity, rhizosphere soil available nutrients, soil enzyme activity, and flue-cured tobacco quality were studied using the Yunyan 87 as the research material. The results showed that biochar-based fertilizer could suppress the incidence of TMV which was 5.37% lower than conventional fertilization. The combined application of biochar-based fertilizer and Trichoderma harzianum could increase the resistance of tobacco plants to black shank and bacterial wilt, with relative control effects of 64.19% and 64.97%, respectively. Biochar-based fertilizer treatment increased soil organic matter, available K, available P, alkaline hydrolysis nitrogen contents, and sucrase and urease activities, which increased by 21.90%, 98.09%, 52.77%, 60.71%, 90.69% and 80.78%, respectively, compared with conventional treatment. Moreover, the combined application of biochar-based fertilizer and Trichoderma harzianum increased the total sugar and reducing sugar contents of tobacco leaves, the middle leaves increased by 2.52 and 3.46 percentage points while the upper leaves increased by 2.46 and 3.01 percentage points, respectively, compared with conventional fertilization; the ratio of potassium to chloride of the middle and upper leaves were increased by 16.51% and 19.24%, respectively, compared with conventional fertilization; the combined application of biochar-based fertilizer and Trichoderma harzianum could increase the contents of polyphenols and neutral aroma substances in tobacco leaves, compared with conventional fertilization treatments, the middle leaves were increased by 13.81% and 11.29% while, the upper leaves were increased by 12.04% and 8.60%, respectively. In this experiment, biochar-based fertilizer and Trichoderma harzianum combined application had the best effects on controlling tobacco diseases, improving soil nutrients, and tobacco leaf quality.

Key words: Biochar-based fertilizer, Trichoderma harzianum, Incidence rate, Soil quality, Flue-cured tobacco quality

Table 1

The amounts of base fertilizer and fertilizer nutrient input for each treatment kg/hm2"

处理
Treatment
基肥施用量Base fertilizer application rate 哈茨木霉菌剂
Trichoderma harzianum
基肥养分投入量
Base fertilizer nutrient input
烟草专用基肥
Special base fertilizer for tobacco
生物饼肥
Biological fertilizer
生物炭基肥
Biochar-based fertilizer

N

P2O5

K2O
有机质
Organic matter
C1 975 450 0 0 138.00 114.00 401.25 461.25
C2 975 450 0 15
T1 750 450 1050 0 152.55 108.15 406.95 1183.50
T2 750 450 1050 15

Fig.1

The effects of different treatments on incidence and disease index"

Fig.2

The effects of different treatments on relative control effect"

Table 2

The effects of different treatments on the contents of mineral nutrient elements"

移栽后天数
Days after transplanting (d)
处理
Treatment
Ca
(g/kg)
K
(g/kg)
Mg
(g/kg)
P
(g/kg)
Cu
(mg/kg)
Fe
(mg/kg)
Mn
(mg/kg)
B
(mg/kg)
Zn
(mg/kg)
40 C1 28.47 17.01 3.71 2.79 16.71 206.14 105.40 23.48 24.94
C2 27.59 21.52 3.92 2.83 22.07 195.43 119.56 27.91 27.38
T1 33.65 21.09 4.60 3.41 29.33 275.38 132.11 31.29 29.16
T2 32.93 22.46 4.54 3.07 23.68 230.88 130.02 29.24 31.45
60 C1 26.99 16.28 3.05 2.03 15.34 180.55 89.73 20.97 20.37
C2 24.81 17.51 3.18 2.19 19.52 171.28 92.27 22.83 23.75
T1 27.06 19.15 3.87 2.88 25.76 223.36 111.64 28.22 25.10
T2 29.28 18.62 3.41 2.76 20.43 204.59 114.49 25.61 26.23
80 C1 25.12 14.65 2.57 1.37 14.03 161.02 64.19 18.45 18.33
C2 22.48 15.25 2.68 1.53 16.96 143.58 72.53 19.11 20.25
T1 25.57 16.09 3.11 1.95 20.82 190.19 99.85 23.08 22.36
T2 28.93 16.43 2.89 1.82 18.91 187.54 98.40 21.52 21.99

Table 3

Effects of different treatments on the contents of available nutrients in rhizosphere soil"

移栽后天数
Days after
Transplanting (d)
处理
Treatment
有机质
Organic matter
(g/kg)
碱解氮
Alkaline hydrolysis
nitrogen (mg/kg)
速效钾
Available K
(mg/kg)
速效磷
Available P
(mg/kg)
40 C1 53.49c 108.01b 144.26b 39.90b
C2 58.28b 106.83b 148.46b 40.37b
T1 64.14a 154.07a 285.58a 57.28a
T2 64.67a 159.90a 285.77a 58.57a
55 C1 52.61b 120.11b 171.10b 49.88b
C2 54.92b 122.04b 175.27b 50.19b
T1 62.68a 163.37a 312.64a 73.05a
T2 64.13a 166.73a 309.63a 73.87a
70 C1 51.20d 114.53c 188.44b 53.04b
C2 55.23c 117.05c 190.67b 50.77b
T1 59.17b 152.97b 327.21a 76.15a
T2 64.03a 163.12a 329.42a 77.56a
85 C1 49.35b 119.38b 209.06b 40.72b
C2 51.02b 117.61b 207.21b 40.08b
T1 55.22a 154.23a 318.59a 61.49a
T2 54.86a 161.74a 311.90a 60.68a
100d C1 50.76b 103.61c 172.57b 37.75b
C2 50.20b 109.38c 177.56b 34.35b
T1 54.32a 157.92b 281.31a 51.11a
T2 55.87a 166.47a 284.59a 52.08a

Table 4

Effects of different treatments on enzyme activities in rhizosphere soil"

移栽后天数
Days after
transplanting (d)
处理
Treatment
蔗糖酶活性
Sucrase activity
[mg/(d·g)]
脲酶活性
Urease activity
[μg/(d·g)]
40 C1 75.46b 383.41b
C2 73.05b 393.21b
T1 90.53a 594.14a
T2 88.11a 600.59a
55 C1 74.94b 414.96b
C2 75.38b 416.14b
T1 98.90a 658.47a
T2 100.35a 656.66a
70 C1 82.40b 423.51b
C2 84.87b 429.45b
T1 122.23a 750.08a
T2 122.50a 765.62a
85 C1 66.99b 411.45b
C2 67.60b 414.53b
T1 120.85a 573.42a
T2 124.93a 556.36a
100d C1 57.84b 393.76b
C2 57.22b 390.70b
T1 105.37a 550.59a
T2 109.11a 567.77a

Table 5

The effects of different treatments on the conventional chemical composition of the baked samples (C3F)"

处理
Treatment
总糖
Total sugar
(%)
还原糖
Reducing
sugar (%)
烟碱
Nicotine
(%)

Potassium
(%)

Chlorine
(%)
总氮
Total
nitrogen (%)
钾氯比
Potassium to
chloride ratio
糖碱比
Sugar to
alkali ratio
氮碱比
Nitrogen to alkali ratio
C1 29.58c 25.50c 2.17a 2.17b 0.40a 1.91a 5.39b 11.78b 0.88a
C2 30.27bc 27.15b 1.89b 1.98c 0.38ab 1.73bc 5.16b 14.71a 0.91a
T1 31.12ab 27.78b 2.02ab 2.36a 0.36c 1.68c 6.58a 13.76a 0.83a
T2 32.10a 28.96a 1.96b 2.32ab 0.37bc 1.77b 6.28a 14.77a 0.91a

Table 6

The effects of different treatments on the conventional chemical composition of the baked samples (B2F)"

处理
Treatment
总糖
Total sugar
(%)
还原糖
Reducing
sugar (%)
烟碱
Nicotine
(%)

Potassium
(%)

Chlorine
(%)
总氮
Total
nitrogen (%)
钾氯比
Potassium to
chloride ratio
糖碱比
Sugar to
alkali ratio
氮碱比
Nitrogen to alkali ratio
C1 23.69c 21.17b 2.78ab 2.14b 0.43a 2.18a 4.99c 7.62b 0.79ab
C2 24.45b 21.39b 2.83a 2.18ab 0.43a 2.25a 5.08c 7.56b 0.80ab
T1 26.17a 23.12a 2.75ab 2.29a 0.41a 2.25a 5.54b 8.42a 0.82a
T2 25.86a 23.74a 2.71b 2.28ab 0.38b 2.05b 5.95a 8.76a 0.76b

Table 7

Effects of different treatments on the contents of polyphenols of the baked samples (C3F) mg/g"

处理
Treatment
绿原酸
Chlorogenic acid
莨菪亭
Scopoletin
芸香苷
Rutin
总量
Total
C1 8.73c 0.16b 6.98b 15.86c
C2 9.19bc 0.19a 7.26ab 16.65b
T1 9.53b 0.16b 7.46a 17.15a
T2 10.28a 0.18a 7.58a 18.05a

Table 8

Effects of different treatments on the contents of polyphenols of the baked samples (B2F) mg/g"

处理
Treatment
绿原酸
Chlorogenic acid
莨菪亭
Scopoletin
芸香苷
Rutin
总量
Total
C1 9.00b 0.18b 8.91c 17.98b
C2 8.70b 0.20a 9.39b 18.18b
T1 9.81a 0.19a 9.53b 19.63a
T2 9.89a 0.20a 10.04a 20.01a

Table 9

Effects of different treatments on the contents of neutral aroma substances of the baked samples (C3F) μg/g"

处理
Treatment
芳香族氨基酸类
Aromatic
amino acids
美拉德反应产物
Maillard reaction
products
类胡萝卜素降解产物
Carotenoid
degradation products
类西柏烷类
Cembranes
其他致香物质
Other aroma
substances
新植二烯
Neophytadiene
总量
Total
C1 8.46 17.51 76.29 40.63 3.37 636.27 782.53
C2 7.73 18.22 79.37 42.18 3.19 640.97 791.66
T1 9.04 18.36 84.18 42.76 4.02 698.89 857.25
T2 8.37 19.76 86.42 44.25 3.76 714.20 876.76

Table 10

Effects of different treatments on the contents of neutral aroma substances of the baked samples (B2F) μg/g"

处理
Treatment
芳香族氨基酸类
Aromatic
amino acids
美拉德反应产物
Maillard reaction products
类胡萝卜素降解产物
Carotenoid degradation products
类西柏烷类
Cembranes
其他致香物质
Other aroma substances
新植二烯
Neophytadiene
总量
Total
C1 9.82 24.18 84.34 45.92 4.77 651.73 820.76
C2 13.32 26.29 83.88 44.53 4.11 637.84 809.97
T1 12.67 23.98 87.64 46.22 4.29 709.36 884.16
T2 15.82 26.74 89.47 48.38 5.15 705.78 891.34

Fig.3

Correlation analysis of tobacco diseases, soil quality and tobacco leaf quality "*" means P < 0.05, "**" means P < 0.01"

[1] 盘文政, 易克, 韩定国 , 等. 新型肥料对烤烟生长及产量品质的影响. 江苏农业科学, 2020,48(13):107-112.
[2] 赵玉芬, 尹应武 . 我国肥料使用中存在的问题及对策. 科学通报, 2015,60(36):3527-3534.
[3] 刘光辉, 李迪秦, 陈一凡 , 等. 烤烟生长发育特性及产质量对施肥技术的响应. 核农学报, 2017,31(10):2032-2038.
[4] 陈懿, 林英超, 黄化刚 , 等. 炭基肥对植烟黄壤性状和烤烟养分积累、产量及品质的影响. 土壤学报, 2019,56(2):495-504.
[5] Zhang J Q, Huang Y L, Lin J Q , et al. Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in Southern China. Journal of Soils and Sediments, 2020,20(156):1-12.
doi: 10.1007/s11368-019-02375-7
[6] 张志浩 . 生物炭基肥对三种类型植烟土壤微生物多样性及烤烟生长的影响. 郑州: 河南农业大学, 2019.
[7] Wang X G, Zhang J H, Xia S B , et al. Effects of combined nitrogenous based inorganic fertilizers and two forms of organic fertilizers on plant phenotypic characteristics and soil bacterial community structure within a cotton field environment. Polish Journal of Environmental Studies, 2020,29(6):4397-4408.
doi: 10.15244/pjoes/118815
[8] Zhang X P, Gao G B, Wu Z Z , et al. Biochar-based organic fertilizer application rates for Tetrastigma hemsleyanum planted under Moso bamboo. Journal of Forestry Research, 2020,31(5):1813-1821.
doi: 10.1007/s11676-019-00965-2
[9] 曹坳程, 刘晓漫, 郭美霞 , 等. 作物土传病害的危害及防治技术. 植物保护, 2017,43(2):6-16.
[10] 李梅云, 谭丽华, 方敦煌 , 等. 哈茨木霉的培养及其对烟草疫霉生长的抑制研究. 微生物学通报, 2006(6):79-83.
[11] Mustafa G, Anwar S, Joyia F A , et al. Molecular characterization and mycoparasitic aptitude of indigenous biocontrol agent Trichoderma harzianum. Journal of Animal and Plant Sciences, 2020,30(6):1508-1515.
[12] 邓俊杰, Abdul M B, 侯雪月 , 等. 木霉对月季幼苗生长的影响. 植物研究, 2020,4(5):666-672.
[13] Shukla S K, Sharma L, Jaiswal V P , et al. Soil quality parameters vis-a-vis growth and yield attributes of sugarcane as influenced by integration of microbial consortium with NPK fertilizers. Scientific Reports, 2020,10(1):1-17.
doi: 10.1038/s41598-019-56847-4
[14] 王玥双 . 哈茨木霉防治草莓灰霉病. 中国果业信息, 2018,35(6):55.
[15] 韩松庭, 武霖通, 黄纯杨 . 生物质材料与拮抗微生物复配对烟草生长及青枯病发生的影响. 植物医生, 2020,33(3):55-60.
[16] 国家烟草专卖局. 烟草及烟草制品多酚类化合物绿原酸、莨菪亭和芸香苷的测定:YC/T 202-2006. 北京: 中国标准出版社, 2006.
[17] 冀浩, 李雪君, 赵永振 , 等. 浸提叶面分泌物对烤烟品质的影响. 中国烟草科学, 2008(2):13-17.
[18] 全国烟草标准化技术委员会. 烟草病害分级及调查方法:YC/T 39-1996. 北京: 国家烟草专卖局, 2002.
[19] 鲍士旦 . 土壤农化分析. 3版. 北京: 中国农业出版社, 2005.
[20] Yuan S F, Li M Y, Fang Z Y , et al. Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biological Control, 2016(92):164-171.
[21] Dordas C . Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development, 2008,28(1):33-46.
doi: 10.1051/agro:2007051
[22] 郑世燕, 丁伟, 杜根平 , 等. 增施矿质营养对烟草青枯病的控病效果及其作用机理. 中国农业科学, 2014,47(6):1099-1110.
[23] Xu N, Tan G, Wang H , et al. Effect of biochar additions to soil onnitrogen leaching,microbial biomass and bacterial community structure. European Journal of Soil Biology, 2016,74:1-8.
doi: 10.1016/j.ejsobi.2016.02.004
[24] Spann T M, Schunmann A W . Mineral nutrition contributes to plant disease and pest resistance. Horticultural Sciences, 2013(6):1-12.
[25] 刘国顺, 何永秋, 杨永锋 , 等. 不同钾肥配施对烤烟质体色素和碳氮代谢及品质的影响. 中国烟草科学, 2013,34(6):49-55.
[26] 韩富根 . 烟草化学.2版. 北京: 中国农业出版社, 2010.
[27] Shen Y J, Zhao L X, Meng H B , et al. Metagenome analysis reveals potential microbial functions in topsoil of wheat-maize rotation system with five-year application of fertilizers. International Journal of Agricultural and Biological Engineering, 2019,12(6):177-184.
doi: 10.25165/j.ijabe.20191206.4849
[28] Li Q, Song X Z, Yrjala K , et al. Biochar mitigates the effect of nitrogen deposition on soil bacterial community composition and enzyme activities in a Torreya grandis orchard. Forest Ecology and Management, 2020(457):1-11.
[29] Gao L, Wang R, Shen G M , et al. Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. Journal of Soil Science and Plant Nutrition, 2017,17(4):884-896.
doi: 10.4067/S0718-95162017000400004
[30] 于铁峰 . 西北干旱灌区紫花苜蓿施肥模型构建及养分高效生理机制研究. 兰州: 甘肃农业大学, 2018.
[31] 赵军, 耿增超, 尚杰 , 等. 生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响. 生态学报, 2016,36(8):2355-2362.
[32] 吴嘉楠, 彭桂新, 杨永锋 , 等. 生物炭与氮肥配施对土壤生物特性和烤烟氮素吸收的影响. 中国烟草学报, 2018,24(3):53-61.
[33] Liu W, Wang S T, Zhang J , et al. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresource Technology, 2014,154:148-154.
doi: 10.1016/j.biortech.2013.12.022 pmid: 24384321
[34] 杨园园, 史宏志, 杨军杰 , 等. 基于移栽期的气候指标对烟叶品质风格的影响. 中国烟草科学, 2014,35(6):21-26.
[1] Xiuling Zhao,Yongxiang Ren,Xin Zhao,Chao Pu,Xiangqian Zhang,Hailin Zhang. Advances in Ecological Effects of Residue Retained in North China Plain [J]. Crops, 2017, 33(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!