Crops ›› 2023, Vol. 39 ›› Issue (4): 1-6.doi: 10.16035/j.issn.1001-7283.2023.04.001
Bian Xiaomeng(), Li Huafeng(), Chen Yanbin()
[1] | 于爱芝, 周建军, 张蕙杰. 我国小宗农产品国际贸易现状与趋势分析. 中国农业资源与区划, 2020, 41(8):110-120. |
[2] | 曲佳佳, 张蕙杰, 麻吉亮. 中国杂粮生产及贸易形势展望. 农业展望, 2021, 17(5):78-85. |
[3] | 林汝法, 柴岩, 廖琴. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002. |
[4] | 侯向娟, 李晋陵, 申潞玲. 山西省大同市小杂粮的发展现状、问题与对策. 中国食物与营养, 2016, 22(8):24-27. |
[5] | 程汝宏, 张婷, 王根平, 等. 新中国成立以来谷子育种的主要研究进展. 粮油食品科技, 2022, 30(4):68-75. |
[6] | 沙敏, 武拉平. 杂粮研究现状与趋势. 农业展望, 2015, 11(2):53-56. |
[7] | 庞文渌. 新常态下我国杂粮加工产业发展思路的探讨. 粮食加工, 2022, 47(2):6-8. |
[8] | 徐琳, 刘超, 田志芳, 等. 山西省杂粮产业现状及产业科技创新发展研究. 农产品加工, 2021(8):72-75. |
[9] | 柴岩, 冯佰利. 中国小杂粮产业发展现状及对策. 干旱地区农业研究, 2003, 21(3):145-151. |
[10] |
Yang Z, Zhang H, Li X, et al. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nature Plants, 2020, 6(9):1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[11] |
Cheng Z, Sun Y, Yang S, et al. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnology Journal, 2021, 19(6):1089-1091.
doi: 10.1111/pbi.v19.6 |
[12] | Zhao M, Tang S, Zhang H, et al. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proceedings of the National Academy Sciences of the United States of America, 2020, 117(35):21766-21774. |
[13] |
Li P, Liu Y, Tan W, et al. Brittle culm 1 encodes a COBRA-like protein involved in secondary cell wall cellulose biosynthesis in sorghum. Plant and Cell Physiology, 2019, 60(4):788-801.
doi: 10.1093/pcp/pcy246 |
[14] | Cai S, Shen Q, Huang Y, et al. Multi-omics analysis reveals the mechanism underlying the edaphic adaptation in wild barley at Evolution Slope (Tabigha). Advanced Science, 2021, 8(20):e2101374. |
[15] |
Kuang L, Shen Q, Chen L, et al. The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies. Plant Communications, 2022, 3(5):100333.
doi: 10.1016/j.xplc.2022.100333 |
[16] |
Zhang K, He M, Fan Y, et al. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biology, 2021, 22:23.
doi: 10.1186/s13059-020-02217-7 pmid: 33430931 |
[17] | He M, He Y, Zhang K, et al. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytologist Foundation, 2022, 235(5):1927-1943. |
[18] |
Ding M, He Y, Zhang K, et al. JA-induced FtBPM3 accumulation promotes FtERF-EAR3 degradation and rutin biosynthesis in Tartary buckwheat. The Plant Journal, 2022, 111(2):323-334.
doi: 10.1111/tpj.15800 pmid: 35524968 |
[19] |
Zhao H, He Y, Zhang K, et al. Rewiring of the seed metabolome during Tartary buckwheat domestication. Plant Biotechnology Journal, 2023, 21(1):150-164.
doi: 10.1111/pbi.v21.1 |
No related articles found! |
|