Crops ›› 2023, Vol. 39 ›› Issue (4): 22-30.doi: 10.16035/j.issn.1001-7283.2023.04.004

Previous Articles     Next Articles

Phenotypic Analysis and Map-Based Cloning of Chalkiness and FlouryEndospermMutantcsein Rice (Oryza sativa L.)

Hua Qin1(), Lin Quanxiang1, Song Yuanhui1, Sun Jiameng1, Zhang Zupu2,3, Chen Qingquan1, Li Jincai1, Zhang Haitao1()   

  1. 1College of Agronomy, Anhui Agricultural University, Hefei230036, Anhui, China
    2Jiangsu Hongqi Seed Co., Ltd., Taizhou225311, Jiangsu, China
    3Jiangsu Province (Hongqi) Engineering Research Center for Rice and Wheat Seed Breeding, Taizhou225311, Jiangsu, China
  • Received:2022-03-09 Revised:2022-05-28 Online:2023-08-15 Published:2023-08-15

Abstract:

It is helpful to clarify the genetic regulatory mechanism of starch and storage protein biosynthesis related to quality and promote rice quality breeding by using mutants related to rice quality. The chalkiness and shrunken endosperm mutantnamed cse was obtained by screening a mutant library of tissue culture of Zhonghua 11, and the phenotype identification and physicochemical properties analysis of grains were carried out. Analysis of genetic behavior of cse and map-based cloning of target gene by F2 population. qRT-PCR was used to analyze the spatiotemporal expression pattern of relatedgenes.Compared with the wild type, the mutant showed significantly different in agronomic traits and starch physicochemical characteristics. The mutant starch granules were irregularly spherical with large interspaces. Genetic analysis showed that the mutant trait was controlled by a pair of recessive nuclear genes. Map-based cloning revealed that cse is located on the long arm of chromosome 4 between Os4-14-8 and Os4-15 with a physical interval of 40kb. Sequencing results showed that only one candidate gene LOC_Os04g55230 encoding TPR protein had mutation in the mapping interval. The deletion of three bases GGC in the first exon led to the deletion of one glycine, and the substitution of one base G in the fourteenth exon for base A led to the mutation of arginine to lysine. The results of qRT-PCR showed that the expression level of LOC_Os04g55230 reached the maximum in endosperm 14 days after fertilization.The mutant LOC_Os04g55230was a new allele of the reported gene OsFLO2/OsCNY8, but the phenotype of the mutant was not completely same as the known OsFLO2 mutant. The cse grains had shrunken appearance, and the effective tiller number, storage protein and fatty acid content were significantly increased.

Key words: Rice(Oryza sativa L.), Floury endosperm, Starch granules, Physicochemical characteristic, Map-based cloning

Table 1

Information of primers"

名称Name 类型Type 正向引物序列(5′-3′)Forward primer sequence (5′-3′) 反向引物序列(5′-3′)Reverse primer sequence (5′-3′)
Os4-10 定位 ACCTTTTCTTGGCTTGAGGG GCTTTTGCTACTTTTGGGGG
Os4-11 定位 ACGTCCATGTCGGTGTACG CCACCACCTCTACTTCTTCAGTG
Os4-12 定位 ACGGAAACGTAGGTGGTCTG ACCCGCTAGCTCTTCGATCT
Os4-13 定位 TTGGTTGCTTCCTCCCATAC GGCATTGTACGACGGATCTC
Os4-14 定位 ACTGTGGAGTACAGGTCGGC GAAACGGAAACGAAACCCTC
Os4-15 定位 CCGCTACTAATAGCAGAGAG GGAGCTTTGTTCTTGCGAAC
Os4-10-13 定位 TCGAAGGACCTTGTGTGATTCC TAGCTATGTTTGCCGAATATTG
Os4-12-11 定位 CAGGTCAAAACTCCTCACGC TGCAGAGTGGCTTTCAATGG
Os4-13-16 定位 CTCGAAAGTATAGACAGACAGCT ACTACTCCTCCCTCTCGTGA
Os4-14-8 定位 GTATTATGCTAACGTCAGCATG CTAGGTGTCAGCATGGTACTG
Os4-15-5 定位 CACCGAATCACCTAAGAATAG CTGAATTCACTAATTCTGTCTC
Primer 1 实时荧光定量PCR CATTCTGAAGGATGAAGTGGTTC ACTCAGACATCGCTAGTACTCAG
Ubiquitin 实时荧光定量PCR GCCCAAGAAGAAGATCAAGAAC GACTTTTATGCTTCCGTTGTTATCT

Table 2

Comp arison of agronomic traits between the wild type and cse"

农艺性状
Agronomic trait
野生型
Wild type
突变体
cse
株高Plant height(cm) 110.20±1.88 101.00±1.06**
主茎穗长Main panicle length (cm) 23.84±0.34 21.94±0.56*
第1节间长
The first internode length (cm)
43.31±0.85 41.53±0.40
第2节间长
The second internode length (cm)
22.40±0.40 19.62±0.56
第3节间长
The third internode length(cm)
13.64±0.75 9.61±1.05**
第4节间长
The fourth internode length (cm)
7.50±0.95 4.51±0.46**
有效分蘖数Effective tiller number 10.02±0.63 14.83±0.43**
一次枝梗数Primary branch number 13.33±1.05 13.40±0.91
二次枝梗数Secondary branch number 43.57±3.33 31.25±2.32**
穗粒数Grain number per panicle 243.88±22.03 172.12±14.21**
粒长Grain length(mm) 7.83±0.04 7.30±0.07*
粒宽Grain width (mm) 3.70±0.10 3.37±0.04**
粒厚Grain thickness (mm) 2.33±0.09 2.03±0.05**
千粒重1000-grain weight (g) 28.95±0.05 18.28±0.10**

Fig.1

Phenotypic characterization of wild type and thecse (a) Plant morphology at heading stage; (b) Mature internodes of ZH11 (left) and cse (right); (c) Panicle morphology at ripening stage; (d) Grain size; (e) Mature grain appearance of ZH11 (outside) and cse (inside); (f) Cross-sections of mature grains. ZH11: Zhonghua 11"

Fig.2Dry

matter accumulation in wildtype and cse at different stages “**”indicates extremely significant difference at P< 0.01 level, the same below"

Fig.3Iodi

ne staining and SEM observation of mature endosperm between wild type and cse a, b: endosperm staining comparison between the wildtype and cse; c, d: SEM observation of mature endosperm of wildtype and cse"

Table 3Phys

icochemical properties comparison between the wild type and cse"

指标Index 野生型Wild type 突变体cse
蛋白质Protein (%) 9.31±0.18 11.29±0.21**
总淀粉Total starch (%) 83.70±0.33 73.90±0.28**
直链淀粉Amylose (%) 17.65±0.48 8.81±0.25**
可溶性糖Soluble sugar (%) 4.64±2.38 6.21±0.57**
脂肪酸Fatty acid (%) 14.13±0.77 25.96±0.38**
垩白度Chalkiness (%) 17.23±0.24 76.84±2.30**
碱消值Alkali spreading value 8.06±0.27 7.64±0.08**
胶稠度Gel consistency (mm) 58.03±0.35 64.52±0.30**

Table 4Ther

mal parameters of the wild type and cse"

材料
Material
起始温度
T0 (℃)
峰值
TP (℃)
结束温度
TC (℃)
焓变
?H (J/g)
野生型
Wild type
66.60±0.65** 71.96±0.45** 76.09±0.29** 7.18±0.83**
cse 61.98±0.54 68.31±0.43 73.76±0.50 5.15±0.30

Fig.4

The swollen volume of wild type and cse starch in urea solutions of various concentrations (a) The swollen volume of wildtype and cse starch in urea solutions of various concentrations; (b) The swollen volume of wild-type and cse starch in urea solutions of various concentrations"

Table 5

Genetic analysis of mutant gene cse"

年份
Year
调查总株数
Total number of
plants investigated
野生型表型个数
Number of wild
type phenotypes
突变体表型个数
Number of mutant
phenotypes
χ2
2020 212 168 44 1.81
2021 743 567 176 0.68

Fig.5

Fine mapping of cse (a)-(d) The numbers beneath the bold lines represented the recombinants identified by the corresponding markers. The red arrow box is the target gene; (e) A schematic representation of the cse gene, the boxes represent the deletion and replacement of bases in exons"

Table 6

Anno tated genes in the fine mapping range"

开放阅读框ORF 基因名称Gene name 注释功能Putative function
1 LOC_Os04g55180 含有α/β折叠家族结构域的蛋白质
2 LOC_Os04g55190 含SPOC结构域的蛋白质
3 LOC_Os04g55200 涂层亚基
4 LOC_Os04g55210 氯通道蛋白
5 LOC_Os04g55220 含有C2结构域的蛋白质
6 LOC_Os04g55230 含有四肽重复结构域的蛋白质

Fig.6

Phylogenetic analysis of CSE (LOC_Os04g55230) and CSE-like proteins"

Fig.7

Wildtype expressionanalysisof CSE in different tissues and endospern of different growth periods"

[1] Wei X, Jiao G, Lin H, et al. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. Journal of Integrative Plant Biology, 2017, 59(2):134-153.
[2] Hanashiro I, Itoh K, Kuratomi Y, et al. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiology, 2008, 49(6):925- 933.
[3] Dinges J R, Colleoni C, Myers A M, et al. Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects. Plant Physiology, 2001, 125:1406-1418.
[4] Zhou H, Wang L, Liu G, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proceedings of the National Academy of Science of the United States of America, 2016, 113 (45):12844-12849.
[5] Nayeon R, Chul Y, Cheon-Seok P, et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Reports, 2007, 26(7):1083- 1095.
[6] She K C, Kusano H, Koizumi K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22(10):3280-3294.
[7] Kiswara G, Lee J H, Hur Y J, et al. Genetic analysis and molecular mapping of low amylose gene du12(t) in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2014, 127(1):51-57.
[8] Matsushima R, Maekawa M, Tomita K, et al. Amyloplast membrane protein SUBSTANDARD STARCH GRAIN6 controls starch grain size in rice endosperm. Plant Physiology, 2016, 170 (3):1445-1459.
[9] Long W H, Wang Y H, Zhu S S, et al. FLOURY-SHRUNKEN ENDOSPERM1 connects phospholipid metabolism and amyloplast development in rice. Plant Physiology, 2018, 177(2):698-712.
[10] Peng C, Wang Y H, Liu F, et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant Journal, 2014, 77(6):917-930.
[11] Lei J, Teng X, Wang Y F, et al. Plastidic pyruvate dehydrogenase complex E 1 component subunit Alpha1 is involved in galactolipid biosynthesis required for armyloplast development in rice. Plant Biotechnology Journal, 2022, 20(3):437-453.
[12] Wang Y H, Liu F, Ren Y L, et al. GOLGI TRANSPORT 1B regulates protein export from endoplasmic reticulum in rice endosperm cells. Plant Cell, 2016, 28(11):2850-2865.
[13] Ren Y L, Wang Y H, Pan T, et al. GPA5 encodes a Rab5a effector required for post-Golgi trafficking of rice storage proteins. Plant Cell, 2020, 32(3):758-777.
[14] Zhu J P, Ren Y L, Wang Y L, et al. OsNHX5-mediated pH homeostasis is required for post-Golgi-trafficking of seed storage proteins in rice endosperm cells. BMC Plant Biology, 2019, 19 (1):295-307.
[15] Wang J, Chen Z C, Zhang Q, et al. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiology, 2020, 184(4):1775-1791.
[16] Wu Y P, Pu C H, Lin H Y, et al. Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylose content in rice. Plant Science, 2015, 233:44-52.
[17] Teramura H, Kondo K, Suzuki M, et al. Aberrant endosperm formation caused by reduced production of major allergen proteins in a rice flo2 mutant that confers low-protein accumulation in grains. Plant Biotechnology, 2019, 36(2):85-90.
[18] 方鹏飞, 李三峰, 焦桂爱, 等. 水稻粉质胚乳突变体flo7的理化性质及基因定位. 中国水稻科学, 2014, 28(5):447-457.
[19] Zhang L, Qi Y Z, Wu M M, et al. Mitochondrion-targeted PENTATRICOPEPTIDE REPEAT 5 is required for cis-splicing of nad4 intron 3 and endosperm development in rice. The Crop Journal, 2020, 9(2):282-296.
[20] 中华人民共和国农业部. 米质测定方法:NY 147-88. 北京: 中国标准出版社. 2002.
[21] 龙武华. 水稻粉质胚乳突变体flo8fse的基因克隆及功能分析. 南京:南京农业大学, 2017.
[22] 张述伟, 宗营杰, 方春燕, 等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化. 食品研究与开发, 2020, 41(7):196- 200.
[23] 张斌. 稻米氨基酸含量的近红外定标模型的创建及应用. 杭州:浙江大学, 2010.
[24] 赵玲珑. PTST2基因调控水稻花粉和胚乳淀粉积累的功能解析.扬州:扬州大学, 2020.
[25] 于艳芳, 刘喜, 田云录, 等. 水稻粉质胚乳fse3突变体的表型分析及基因定位. 中国农业科学, 2018, 51(11):2023-2037.
[26] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19):4321- 4325.
[27] Sanguinetti C J, Dias N E, Simpson A J. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17(5):915-919.
[28] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25(4):402-408.
[29] Kihira M, Tanicuchi K, Kaneko C, et al. Arabidopsis thaliana FLO2 is involved in efficiency of photoassimilate translocation, which is associated with leaf growth and aging, yield of seeds and seed quality. Plant Cell Physiology, 2017, 58(3):440-450.
[30] Sato N, Kihira M, Matsushita R, et al. AtFLL2,a member of the FLO2 gene family, affects the enlargement of leaves at the vegetative stage and facilitates the regulation of carbon metabolism and flow. Bioscience Biotechnology and Biochemistry, 2020, 84 (12):2466-2475.
[31] 张大鹏. 稻米品质突变体库的构建及粉质胚乳垩白突变体(flo6)的基因定位. 杭州:浙江大学, 2012.
[32] Nishi A, Nakamura Y, Tanaka N, et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiology, 2001, 127(2):459-472.
[33] Liabres S, Tsenkov M I, Macgowan S A, et al. Disease related single point mutations alter the global dynamics of a tetratricopeptide (TPR) α-solenoid domain. Journal of Structural Biology, 2020, 209(1):107405.
[34] Wei G, Yang H X, Xiong Z X, et al. TPR domain coding gene ST2 may be involved in regulating tillering and fertility in rice. Czech Journal of Genetics and Plant Breeding, 2021, 57(3):83-90.
[35] Myers A M, James M G, Lin Q, et al. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell, 2011, 23(6):2331-2347.
[36] Kelly A A, Kalisch B, Hölzl G, et al. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proceedings of the National Academy Science of the United States of America, 2016, 113(38):10714- 10719.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!