Crops ›› 2021, Vol. 37 ›› Issue (1): 200-206.doi: 10.16035/j.issn.1001-7283.2021.01.028

Previous Articles    

Study on the Classification of Wheat Grain Quality Based on GWO Optimized SVM

An Juanhua(), Dong Xin, Wang Kejian(), He Zhenxue   

  1. College of Information Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
  • Received:2020-03-18 Revised:2020-05-08 Online:2021-02-15 Published:2021-02-23
  • Contact: Wang Kejian E-mail:2193166210@qq.com;33688415@qq.com

Abstract:

Wheat grain quality is not only an important determinant of yield and quality but also a comprehensive indicator of breeding adaptability. In order to improve the accuracy of wheat grain grading, at the same time to solve the problem of local optimal solution and slow convergence rate existed in artificial neural networks, we presented a method based on support vector machine (SVM) with gray wolf algorithm optimization (GWO) for grading of wheat grain. First of all to wheat 8805 as the research object, using the image processing technology of wheat grain image preprocessing and extract the grain morphology, color, texture, a total of 21 characteristics. Then, GWO was used to optimize the two parameters (c, σ) of the SVM, and the GWO-SVM model was established to grading of wheat grains. Comparing the GWO optimized SVM algorithm with other algorithms, the results showed that the accuracy of the GWO optimized SVM algorithm for wheat grain classification can reach 95.08%, which is significantly higher than other algorithms.

Key words: Wheat grain, Classification of advantages and disadvantages, Grey wolf optimizer, Support vector machine

Fig.1

Wheat grain RGB original image"

Fig.2

Effect diagram of wheat grain pretreatment"

Table 1

Comparison of GWO-SVM and manual classification results"

等级
Grade
人工分级结果(粒)
Manual grading results (grain)
GWO-SVM
正确分级数(粒)
Number of correct grades (grain)
错误分级数(粒)
Number of error ratings (grain)
正检率
Correct detection rate (%)
错检率
False detection rate (%)
优Superior 29 28 1 96.55 3.45
中Medium 20 19 1 95.00 5.00
劣Inferior 12 11 1 91.67 8.33
总计Total 61 58 3 95.08 4.92
均值Mean - - - 94.41 5.59

Table 2

Classification results of different algorithms"

算法
Algorithm
等级
Grade
正确分级数(粒)
Number of correct grades (grain)
错误分级数(粒)
Number of error ratings (grain)
正检率
Correct detection rate (%)
错检率
False detection rate (%)
PSO-SVM 优Superior 28 1 96.55 3.45
中Medium 17 3 85.00 15.00
劣Inferior 10 2 83.33 16.67
总计Total 55 6 90.16 9.84
均值Mean - - 88.29 11.71
SVM 优Superior 26 3 89.66 10.34
中Medium 15 5 75.00 25.00
劣Inferior 10 2 83.33 16.67
总计Total 51 10 83.61 16.39
均值Mean - - 82.66 17.34

Table 3

Time results of different algorithms s"

KK-value SVM GWO-SVM PSO-SVM
3 1.68 4.27 12.27
5 2.72 4.86 14.86
7 3.20 5.01 15.01
[1] 赵广才, 常旭红, 王德梅. 小麦生产概况及其发展. 作物杂志, 2018(4):1-7.
[2] 王一丁, 李霁阳. 谷物外观品质检测方法的研究. 计算机测量与控制, 2017,18(2):35-38.
[3] Zayas I Y, Pomeranz Y, Lai F S. Discrimination between Arthur and Arkan wheats by image analysis. Cereal Chemistry, 1985,629(2):52-56.
[4] Verma B. Image processing techniques for grading & classification of rice. International Conference on Computer and Communication Technology 2010,Punjab India, IEEE, 2010: 220-223.
[5] Paliwal J, Visen N S, Jayas D S. Cereal grain and dockage identification using machine vision. Biosytems Engineering, 2003,85(1):51-57.
[6] Mahale B, Korde S. Rice quality analysis using image processing techniques. Convergence of Technology. IEEE, 2014: 1-5.
[7] Abirami S, Neelamegam P, Kala H. Analysis of rice granules using image processing and neural network pattern recognition tool. Journal of Electrostatics, 2015,76(8):20-24.
[8] Waghmare H, Kokare R, Dandawate Y. Detection and classification of diseases of Grape plant using opposite colour Local Binary Pattern feature and machine learning for automated Decision Support System. International Conference on Signal Processing and Integrated Networks 2016, New Delhi India, 2016: 513-518.
[9] 石小风. 基于图像处理的小麦外观品质检测与分级. 郑州:河南工业大学, 2013.
[10] 梁良. 基于改进层次分析法小麦籽粒优劣分级技术研究. 保定:河北农业大学, 2015.
[11] 冯丽娟, 李秀娟, 文成林. 基于稀疏表示的小麦品种识别. 江南大学学报, 2015,14(6):730-735.
[12] 孟惜, 王克俭, 韩宪忠. 基于改进BP网络的小麦品种识别. 贵州农业科学, 2017,45(10):156-160.
[13] 张博. 基于深度学习的小麦外观品质机器视觉检测研究. 杨凌:西北农林科技大学, 2019.
[14] 张浩, 李和平, 叶娟. 小麦籽粒外观形态特征测定技术研究. 粮食与饲料工业, 2013(3):7-9.
[15] 张恒敢, 杨四军, 顾克军. 应用数字图像处理获取小麦子粒外观特征参数的方法及其Matlab实现. 江苏农业科学, 2005(1):28-31.
[16] 张恒敢, 杨四军. 应用数字图像处理获取小麦籽粒颜色特征参数. 安徽农业科学, 2008,36(9):3582-3583.
[17] 王志军, 丛培盛. 基于图像处理与人工神经网络的小麦颗粒外观品质评价方法. 农业工程学报, 2007,23(1):158-161.
[18] 谭贵生, 石宜金. 基于混沌粒子群优化支持向量机的变压器故障诊断. 昆明理工大学学报(自然科学版), 2019,44(5):54-61.
[19] 邹心遥, 陈敬伟, 姚若河. 采用粒子群优化的SVM算法在数据分类中的应用. 华侨大学学报, 2016,37(2):171-174.
[20] 燕志星, 王海瑞, 吕维宗. 基于GWO-SVM算法的滚动轴承故障诊断. 化工自动化及仪表, 2019,46(10):806-810.
[21] 王志华, 罗奇, 刘绍庭. 基于混沌灰狼优化算法的SVM分类器研究. 计算机工程与科学, 2018,40(11):2040-2046.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[2] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[3] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[4] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[5] Yu Fan,Hongli Wang,Feng He,Dili Lai,Jiajun Wang,Yue Song,Dabing Xiang. Nutritional Quality in Seeds of Tartary Buckwheat Affected by After-Ripening[J]. Crops, 2018, 34(1): 96 -101 .
[6] . [J]. Crops, 2011, 27(6): 10 -13 .
[7] . [J]. Crops, 2009, 25(3): 48 -51 .
[8] . [J]. Crops, 2007, 23(5): 87 -89 .
[9] . [J]. Crops, 2005, 21(2): 51 .
[10] . [J]. Crops, 1990, 6(2): 9 -10 .