Crops ›› 2021, Vol. 37 ›› Issue (1): 193-199.doi: 10.16035/j.issn.1001-7283.2021.01.027

Previous Articles     Next Articles

Forecast Model of the Aboveground Organ Morphogenesis on Castor

Xu Shoujun1,2,3,4(), Wang Lei1, Demuqige 1, Wang Jinbo1, Qi Haixiang1, Zhu Guoli1,2,3,4,5   

  1. 1Agricultural College, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China
    2Inner Mongolia Industry Engineering Technology Research Center of Universities for Castor, Tongliao 028043,Inner Mongolia, China
    3Inner Mongolia Key Laboratory of Castor Breeding, Tongliao 028043, Inner Mongolia, China
    4Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao 028043, Inner Mongolia, China
    5Tongliao Academy of Agricultural Sciences of Inner Mongolia, Tongliao 028015, Inner Mongolia, China
  • Received:2020-05-06 Revised:2020-12-31 Online:2021-02-15 Published:2021-02-23

Abstract:

Based on systematic observation, the models of the aboveground organ morphogenesis was established on four castor varieties, Tongbi 9, Tongbi 10, Tongbi 11 and Tongbi 13. In the model, the time step was physiological development time, the growth process and the growth of the order of the stem, leaves and pods were measured by physiological development day, the model parameters were determined by genetic parameters, and the minimum nitrogen content, maximum nitrogen content, and critical nitrogen content were used to express the impact of nitrogen. The results showed that the absolute prediction errors ranges of internode length, internode diameter, leaf length, leaf width, ear length, capsule length and capsule diameter were 0.10-0.72, 0.03-0.16, 0.19-0.73, 0.30-0.60, 0.89-1.85, 0.11-0.21 and 0.05-0.12cm respectively, with the root mean square errors (RMSE) of 0.14-0.60, 0.06-0.11, 0.47, 0.38, 1.42, 0.16 and 0.07cm respectively. The model reflected a satisfactory prediction.

Key words: Castor, Organ, Morphogenesis, Simulation

Fig.1

Internode length variation"

Fig.2

Change in diameter maximum of each section"

Fig.3

Dynamic of the maximum of leaf length"

Fig.4

Dynamic of the maximum of leaf width"

Fig.5

Dynamic of ear length"

Fig.6

Dynamic of the maximum of capsule length"

Fig.7

Dynamic of the maximum of capsule diameter"

Table 1

Genetic parameters of four castor varieties cm"

品种
Variety
顶部节间长度
Length of top internode
第1节间直径
Diameter of 1th internode
叶长
Leaf length
叶宽
Leaf width
果穗长
Ear length
蒴果长
Capsule length
蒴果直径
Capsule diameter
通蓖11号
Tongbi 11
20.56 3.20 15.72 13.34 50.72 2.48 2.00
通蓖13号
Tongbi 13
18.68 2.96 13.72 12.32 44.00 2.30 1.90
通蓖9号
Tongbi 9
23.74 3.24 14.90 13.04 48.46 2.40 1.94
通蓖10号
Tongbi 10
26.52 3.38 17.00 14.04 56.84 2.54 2.04

Table 2

Prediction errors of internode length and main stem diameter on castor (n=16) cm"

品种
Variety
节间长Internode length 主茎直径Main stem diameter
第3节间
3th internode
第5节间
5th internode
第7节间
7th internode
第9节间
9th internode
第3节间
3th internode
第5节间
5th internode
第7节间
7th internode
第9节间
9th internode
通蓖11号Tongbi 11 0.11 0.10 -0.19 -0.31 -0.08 -0.03 0.04 0.08
通蓖13号Tongbi 13 -0.17 0.13 -0.25 -0.58 0.06 0.12 0.09 0.16
通蓖9号Tongbi 9 -0.12 0.22 0.25 -0.71 -0.06 0.04 0.06 0.10
通蓖10号Tongbi 10 -0.14 0.33 0.36 0.72 0.05 0.14 0.11 0.09
RMSE 0.14 0.21 0.27 0.60 0.06 0.10 0.08 0.11

Table 3

Prediction errors of leaf length, leaf width, ear length, capsule length and capsule diameter of castor (n=20) cm"

品种Variety 叶长Leaf length 叶宽Leaf width 果穗长Ear length 蒴果长Capsule length 蒴果直径Capsule diameter
通蓖11号Tongbi 11 -0.36 0.60 -1.85 -0.21 -0.05
通蓖13号Tongbi 13 0.41 -0.26 1.33 -0.16 -0.06
通蓖9号Tongbi 9 0.19 0.30 -0.89 0.11 -0.02
通蓖10号Tongbi 10 0.73 0.25 -1.44 0.12 0.12
RMSE 0.47 0.38 1.42 0.16 0.07

Fig.8

Comparison of simulated values with observed values on stem, leaf and fruit of castor"

[1] Gaëtan L, Lucas F. A generic individual-based model to simulate morphogenesis,C-N acquisition and population dynamics in contrasting forage legumes. Annals of Botany, 2018,121(5):875-896.
doi: 10.1093/aob/mcx154 pmid: 29300872
[2] 王婉颖, 冯潇. 园林植物三维数字模型的构建与应用探索. 风景园林, 2019,26(12):103-108.
[3] 陈天雨, 高晓阳, 吴翔, 等. 红地球葡萄枝条生长动态模拟模型研究. 浙江农业学报, 2017,29(7):1208-1215.
[4] 淮永建, 杨丹琦, 蔡东娜. 基于三维点云数据的花瓣形态及生长过程模拟. 农业工程学报, 2019,35(15):155-164.
[5] Johnen T, Boettcher U, Kage H. A variable thermal time of the double ridge to flag leaf emergence phase improves the predictive quality of a CERES-Wheat type phenology model. Computers and Electronics in Agriculture, 2012,89:62-69.
doi: 10.1016/j.compag.2012.08.002
[6] 刘永霞, 岳延滨, 刘岩, 等. 基于生物量的水稻根系生长动态模型. 江苏农业学报, 2011,27(4):704-709.
[7] Watanabe T, Hanan J S, Room P M, et al. Rice morphogenesis and plant architecture:measurement,specification and the reconstruction of structural development by 3D architectural modelling. Annals of Botany, 2005,95:1131-1143.
doi: 10.1093/aob/mci136 pmid: 15820987
[8] Masle J, Doussinault G, Farquhar G D, et al. Foliar stage in wheat correlates better to photothermal time than to thermaltime. Plant Cell and Environment, 1989,12:235-247.
doi: 10.1111/pce.1989.12.issue-3
[9] Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agricultural System, 2003,75:47-77.
doi: 10.1016/S0308-521X(01)00114-7
[10] 常丽英, 顾东祥, 张文宇, 等. 水稻叶片伸长过程的模拟模型. 作物学报, 2008,34(2):311-317.
doi: 10.3724/SP.J.1006.2008.00311
[11] 陈国庆, 朱艳, 曹卫星. 冬小麦叶片生长特征的动态模拟. 作物学报, 2005,31(11):1524-1527.
[12] 郑国清, 段韶芬, 阎书波, 等. 玉米叶龄与器官发育模拟模型. 玉米科学, 2003,1(4):63-66.
[13] 郭银巧, 赵传德, 朱艳, 等. 棉花地上部形态建成的光温模型. 作物学报, 2009,35(11):2101-2106.
doi: 10.3724/SP.J.1006.2009.02101
[14] 李文峰, 李超, 周治国, 等. 基于异速生长关系的棉籽油分含量模拟模型. 作物杂志, 2012(1):22-25.
[15] 孙红敏, 郑萍, 张继成. 大豆叶片生长特征的动态模拟研究. 东北农业大学学报, 2007,38(4):446-448.
[16] 魏海林, 王小卉, 李绪孟, 等. 蓖麻冠层形态结构特征分析与建模. 林业科技通讯, 2019(7):3-9.
[17] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
[18] 曹卫星, 罗卫红. 作物系统模拟及智能管理. 北京: 华文出版社, 2000: 34-145.
[19] 徐寿军, 杨恒山, 王云, 等. 蓖麻花芽分化和物候期的模拟研究. 中国油料作物学报, 2014,36(3):363-368.
doi: 10.7505/j.issn.1007-9084.2014.03.011
[20] 顾世梁, 惠大丰, 莫惠栋. 非线性方程最优拟合的缩张算法. 作物学报, 1998,24(5):513-519.
[21] 周娟, 姜爽, 陈兵林, 等. 棉花茎枝叶形态模型研究. 棉花学报, 2009,21(3):206-211.
[22] 孙爱珍, 何火娇, 杨红云, 等. 基于积温变化的水稻叶形态伸展过程可视化模拟. 江西农业大学学报, 2012,34(5):1058-1063.
[23] 常毅博, 李建明, 尚晓梅, 等. 水肥耦合驱动下的番茄植株形态模拟模型. 西北农林科技大学学报(自然科学版), 2015,43(2):126-133.
[24] 倪纪恒, 陈学好, 陈春宏, 等. 用辐热积法模拟温室黄瓜果实生长. 农业工程学报, 2009,25(5):192-196.
[25] 李刚, 孙骞, 于善祥, 等. 氮素对长江中下游温室切花百合外观品质影响的模拟研究. 生态学报, 2014,34(14):4057-4070.
doi: 10.5846/stxb201211291703
[26] 宋有洪, 郭焱, 李保国, 等. 基于器官生物量构建植株形态的玉米虚拟模型. 生态学报, 2003,23(12):2579-2586.
[27] 陈超, 潘学标, 张立祯, 等. 棉花地上部生长的功能-结构模型研究. 作物学报, 2012,38(12):2237-2245.
doi: 10.3724/SP.J.1006.2012.02237
[28] 展志岗, 王一鸣, de Reffye P, 等. 冬小麦植株生长的形态构造模型研究. 农业工程学报, 2001,17(5):6-10.
[29] 张伟欣, 曹宏鑫, 朱艳, 等. 基于生物量的油菜越冬前植株叶片空间形态结构模型. 作物学报, 2015,41(2):318-328.
doi: 10.3724/SP.J.1006.2015.00318
[30] 徐寿军, 顾小莉, 许如根, 等. 大麦穗和茎秆生长的动态模拟. 麦类作物学报, 2007,27(2):282-287.
doi: 10.7606/j.issn.1009-1041.2007.02.072
[31] 徐寿军, 李志刚, 杨恒山, 等. 大豆茎秆、叶片及豆荚生长的动态模拟. 农业工程学报, 2013,29(20):151-159.
[32] 杨恒山, 李莹莹, 徐寿军, 等. 玉米地上主要器官形态建成的动态模拟. 中国生态农业学报, 2015,23(2):183-190.
[1] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[2] Liu Yan, Gong Liang, Xing Yuehua, Bao Hongjing. Study on the Optimization of Organic-Inorganic Fertilization Model for Maize Based on Orthogonal Design [J]. Crops, 2021, 37(1): 168-174.
[3] Cao Xiaochuang, Li Yefeng, Wu Longlong, Zhu Chunquan, Zhu Lianfeng, Zhang Junhua, Jin Qianyu. Effects of Organic Soluble Fertilizer on the Accumulation and Translocation of Dry Matter and Nitrogen of Rice [J]. Crops, 2020, 36(5): 110-118.
[4] Yang Yongqing, Gao Fangfang, Ma Yajun, Chen Xin, Zhang Jie. Effects of Different Fertilizer Treatments on Yield, Quality and Economic Benefit of Foxtail Millet in Dry Farming Area of Shanxi Province [J]. Crops, 2020, 36(4): 195-201.
[5] He Wanchun, Huang Kai, Ling Peng, Chen Zixiong, Wang Jingcai, Pan Xiaochun, Zhang Juanning, Li Pengcheng. Effects of Different Ratio of Organic Fertilizer Nitrogen to Fertilizer Nitrogen on the Absorption Capacity and Morphology of Potato Roots [J]. Crops, 2020, 36(3): 132-136.
[6] Liu Yong, Liu Yike, Zhu Zhanwang, Tian Jindong, Chen Ling, Zou Juan, Zhao Fawen, Guan Jian, Gao Chunbao, Tong Hanwen. Current Situation and Analysis on Organic Production of Wheat—Illustrated by the Case of Nanzhang County in Hubei [J]. Crops, 2020, 36(3): 16-21.
[7] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles [J]. Crops, 2019, 35(6): 1-7.
[8] Huang Binglin,Wang Mengxue,Jin Xijun,Hu Guohua,Zhang Yuxian. Effects of Different Tillage Treatments on Soil Microorganisms, Enzyme Activities and Nutrients [J]. Crops, 2019, 35(6): 104-113.
[9] Li Chunxi,Li Sisi,Shao Yun,Ma Shouchen,Liu Qing,Weng Zhengpeng,Li Xiaobo. Effects of Organic Materials Returning on Enzyme Activities and Soil Carbon and Nitrogen Content in Wheat Field under Nitrogen-Reducing Conditions [J]. Crops, 2019, 35(5): 129-134.
[10] Li Guannan,Huang Lihua,Zhang Lu,Chen Jiaxing,Yang Jingmin. Effects of Organic Fertilizer and Straw Returning on Nutrition and Taste Quality of Rice in Saline-Sodic Soil of Northeast China [J]. Crops, 2019, 35(5): 82-88.
[11] Ma Fanfan,Xing Sulin,Gan Manqin,Liu Peishi,Huang Yu,Gan Xiaoyu,Ma Youhua. Effects of Organic Fertilizer Substituting for Chemical Fertilizer on Rice Yield, Soil Fertility and Nitrogen and Phosphorus Loss in Farmland [J]. Crops, 2019, 35(5): 89-96.
[12] Zhou Yun,Li Yongmei,Fan Maopan,Wang Zilin,Xu Zhi,Zhang Dan,Zhao Jixia. Effects of Nitrogen in Organic Manure Replacing Chemical Nitrogenous Fertilizer on Aggregates of Red Soil, Maize Yield and Quality [J]. Crops, 2019, 35(4): 125-132.
[13] Zhong Dasen,Zhao Ming,Zhang Zhao. Organization and Implementation Progress of National Key Research and Development Program "Science and Technology Innovation for High Yield and Efficiency of Crop" [J]. Crops, 2019, 35(3): 1-9.
[14] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province [J]. Crops, 2019, 35(3): 132-136.
[15] Jiang Nan,Gong Zhanwu,Chen Lili,Hu Yajie,Wei Jianyu,Wang Shengcai,Li Diqin. Grey Correlation Analysis Between Soil Nutrients and Three Microorganisms after Application of Bacillus subtilis [J]. Crops, 2019, 35(3): 142-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[2] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[3] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[4] Chengxun Li,Aiping Li,Xiaoyu Xu,Kaibin Zheng. Discussion on the Mechanism of Stress Resistance of Pigeonpea and Application Prospect in Fujian Province[J]. Crops, 2018, 34(4): 28 -31 .
[5] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars[J]. Crops, 2018, 34(4): 69 -78 .
[6] Mingcong Zhang,Yingce Zhan,Songyu He,Xijun Jin,Mengxue Wang,Chunyuan Ren,Yuxian Zhang. Effects of Different Nitrogen Fertilizer and Density Level on Dry Matter Accumulation and Yield of Adzuki Bean[J]. Crops, 2018, 34(1): 141 -146 .
[7] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology[J]. Crops, 2018, 34(1): 160 -165 .
[8] Yanfang Hao,Liangqun Wang,Yong Liu,Wei Zhang,Wei Yang,Hongyan Bai,Bo Wu. Establishment of Sorghum Cell Suspensions with Young Leaves[J]. Crops, 2018, 34(1): 35 -40 .
[9] Jie Wang,Bo Zeng,Cailin Lei,Zhichao Zhao,Jiulin Wang,Zhijun Cheng. Variety Analysis of Northern Rice Regional Trials in Recent 15 Years[J]. Crops, 2018, 34(1): 71 -76 .
[10] . [J]. Crops, 2010, 26(4): 4 -9 .