Crops ›› 2022, Vol. 38 ›› Issue (2): 54-63.doi: 10.16035/j.issn.1001-7283.2022.02.008

Previous Articles     Next Articles

Identification and Functional Analysis of miR169 Family and Its Target Genes in Setaria italica

Lu Ping1(), Kang Qingfang1, Zhao Mengyao1, Zhang Fengjie2, Wu Qiangqiang2, Ma Fangfang2, Wang Yushen2, Han Yuanhuai2, Wang Xingchun1, Li Xueyin1,*()   

  1. 1College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    2College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2021-04-19 Revised:2022-02-12 Online:2022-04-15 Published:2022-04-24
  • Contact: Li Xueyin E-mail:luping10925@163.com;lixueyin2010@163.com

Abstract:

MicroRNA are widely involved in various plant growth and development processes, and the miR169 family is one of the most conservative miRNA families. In this study, a series of bioinformatic analyses were conducted on the miR169 family of Setaria italica (sit-miR169), including chromosomal distribution, phylogeny, base conservativeness, secondary structures, and the expression of sit-miR169 and its target genes. We identified 15 sit-miR169 distributed on seven chromosomes. Phylogenetic analysis showed that the sit-MIR169 family could be mainly divided into two clusters, and some members of sit-MIR169 were closely related to the members of the osa-MIR169 family in rice. All the precursors of sit-miR169 formed a stable secondary stem-loop structure, and the mature ones were all generated from the 5'-end arms of the precursors, and the mature sequences had a strong base conservativeness. The sit-miR169 was expressed in flowers, leaves, and roots, with obvious tissue specificity. The target genes of sit-miR169 were mainly NF-YA transcription factor genes, in addition to L-type lectin-domain containing receptor kinase, ω-6 fatty acid desaturase, protein transporter Secla, protein SDG40, ring finger transmembrane domain-containing protein, and ribosomal large pseudouridine synthase SVR1 genes. The miR169 affected plant growth and development and environmental response by regulating the expression of target genes, especially the NF-YA gene. The NF-YA gene in Setaria italica was mainly expressed in roots and spikes, showing obvious specificity tissue expression. In addition, the expression of sit-miR169 target genes was induced by the environmental conditions, for example, drought condition further induced the expression of Seita.9G521100 in roots.

Key words: Setaria italica, miRNA, miR169, Target gene, Bioinformatics

Table 1

Basic information of sit-miR169 family members"

miRNA miRNA基因座
miRNA locus
染色体定位
Chromosome location
成熟序列
Mature sequence
碱基数
Base
number
星标序列
Star sequence
碱基数
Base
number
sit-miR169a sit-MIR169a Chr1: 6337067-6337254 (-) CAGCCAAGGAUGACUUGCCGG 21 GCAAGUUUGUCCAUGGCUACG 21
sit-miR169b sit-MIR169b Chr4: 30531819-30531966 (+) CAGCCAAGGAUGACUUGCCGG 21 GGCAAGUUGUCCUUGGCUACA 21
sit-miR169c sit-MIR169c Chr6: 1523821-1523981 (-) CAGCCAAGGAUGACUUGCCGG 21 GCAAGUCUGUCCUUGGCUACA 21
sit-miR169d sit-MIR169d Chr6: 1522499-1522640 (-) CAGCCAAGGAUGACUUGCCGG 21 GCAAGUCUGUCCUUGGCUACA 21
sit-miIR169e sit-MIR169e Chr7: 29380903-29381033 (-) CAGCCAAGGAUGACUUGCCGG 21 GCAAGUCUGUCCUUGGCUACA 21
sit-miR169f sit-MIR169f Chr1: 37871079-37871206 (-) UAGCCAAGGAUGACUUGCCGG 21 AGGUUUUUCUCGCUGGCUACA 21
sit-miR169g sit-MIR169g Chr2: 36921080-36921208 (+) UAGCCAAGGAUGACUUGCCUG 21 AGGCAGUCUCCUUGGCUAGCC 21
sit-miR169h sit-MIR169h Chr2: 36923990-36924147 (+) UAGCCAAGGAUGACUUGCCUG 21 AGGCAGUCUCCUUGGCUAGUC 21
sit-miR169i sit-MIR169i Chr2: 36926242-36926373 (+) UAGCCAAGGAUGACUUGCCUG 21 AGGCAGUCUCCUUAGGUAGUC 21
sit-miR169j sit-MIR169j Chr2: 30310044-30310172 (-) UAGCCAAGGAUGACUUGCCUG 21 GGCAAGUCAUCUGUGACUACG 21
sit-miR169k sit-MIR169k Chr3: 6158109-6158242 (+) UAGCCAAGAAUGACUUGCCU 20 AUGGUAGGCAUUCUGGUUAAG 21
sit-miR169l sit-MIR169l Chr6: 33994504-33994663 (+) UAGCCAAGGAUGACUUGCCUG 21 CGGCAGUCUCCUUGGCUAGCC 21
sit-miR169m sit-MIR169m Chr6: 33997852-33997981 (+) UAGCCAAGGAUGACUUGCCUG 21 GGGCAGUCUCCUUGGCUAGCC 21
sit-miR169n sit-MIR169n Chr6: 34000992-34001127 (+) UAGCCAAGGAUGACUUGCCUG 21 AGGCAGUCUCCUUGGCUAGCC 21
sit-miR169o sit-MIR169o Chr8: 12119169-12119306 (+) UAGCCAAGAAUGACUUGCCU 20 GGCGAGUCUUCUUGGCUAGCC 21

Fig.1

Chromosome location of sit-MIR169 genes"

Fig.2

Phylogenetic analysis of sit-miR169 family"

Fig.3

Phylogenetic analysis of the miR169 family in foxtail millet, rice and Arabidopsis ▲ represent sit-MIR169, ● represent osa-MIR169, ■ represent ath-MIR169"

Fig.4

Base conservativeness of sit-miR169 sequences a: precursor sequence; b: mature sequence; c: star sequence"

Fig.5

Secondary stem-loop structure of sit-MIR169 a-g: sit-MIR169a - sit-MIR169g, h-o: sit-MIR169h - sit-MIR169o. Colors from blue to red indicate the probability of base pairing from 0 to 1"

Fig.6

Expression of sit-miR169 in different tissues “*”represents star sequences"

Table 2

Prediction of miR169 target genes in foxtail millet"

Fig. 7

Expression of sit-miR169 target genes in different tissues and environment conditions L1-2W-HL: leaf 1, 2 weeks, highlight; L2-2W-HL: leaf 2, 2 weeks, highlight; L3-2W-HL: leaf 3, 2 weeks, highlight; L4-2W-HL: Leaf 4, 2 weeks, highlight; L5-2W-HL: leaf 5, 2 weeks, highlight; L6-2W-HL: leaf 6, 2 weeks highlight; TA-BL: total aerial, blue light; TA-RL: total aerial, red light; TA-D: total aerial, dark; TA-FRL: total aerial, far red light; R-10D-L: root, 10 days, light; R-U: root, urea; R-A: root, ammonia; R-N: root, nitrate; R-D: root, drought;S-1W-HL: shoot, 1 week, highlight; P-S1-HL: panicle, stage 1, highlight; P-S2-HL: panicle, stage 2, highlight; ES-5D-D: eiolated seedling, 5 days, dark; GS-6D-D: germ shoot, 6 days, dark"

[1] 刁现民. 中国谷子产业与产业技术体系. 北京: 中国农业科学技术出版社, 2011.
[2] Diao X M, Schnable J, Bennetzen J L, et al. Initiation of Setaria as a model plant. Frontiers of Agricultural Science and Engineering, 2014, 1(1):16.
doi: 10.15302/J-FASE-2014011
[3] Yang Z R, Zhang H S, Li X K, et al. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nature Plants, 2020, 6(9):1167-1178.
doi: 10.1038/s41477-020-0747-7
[4] Bennetzen J L, Schmutz J, Wang H, et al. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30(6):555-561.
doi: 10.1038/nbt.2196 pmid: 22580951
[5] Zhang G Y, Liu X, Quan Z W, et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30(6):549-554.
doi: 10.1038/nbt.2195
[6] 杨丽娟, 李世访, 卢美光. miRNA 在植物病原调控方面的研究进展. 生物技术通报, 2020, 36(1):101-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1045
[7] 郁佳雯, 郁佳雯, 韩荣鹏, 等. microRNA 在植物生长发育中的研究进展. 分子植物育种, 2020, 18(5):1496-1504.
[8] 张翠桔, 莫蓓莘, 陈雪梅, 等. 植物 miRNA 作用方式的分子机制研究进展. 生物技术通报, 2020, 36(7):1-14.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0262
[9] Wang Y Q, Li L, Tang S, et al. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genetics, 2016, 17(1):1-16
[10] Xu M Y, Zhang L, Li W W, et al. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65(1):89-101.
doi: 10.1093/jxb/ert353
[11] 赵胜利.Osa-miR169 调控水稻对稻瘟病菌免疫机理的研究. 成都:四川农业大学, 2017.
[12] Zhao B T, Ge L F, Liang R Q, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Molecular Biology, 2009, 10(1):1-10.
doi: 10.1186/1471-2199-10-1
[13] Luan M D, Xu M Y, Lu Y M, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene, 2015, 555(2):178-185.
doi: 10.1016/j.gene.2014.11.001
[14] Ni Z Y, Hu Z, Jiang Q Y, et al. GmNFYA3,a target gene of miR169,is a positive regulator of plant tolerance to drought stress. Plant Molecular Biology, 2013, 82(1/2):113-129.
doi: 10.1007/s11103-013-0040-5
[15] 尹海龙.大豆 miR169d 的表达分析及功能验证. 长春:吉林农业大学, 2013.
[16] 孙广鑫, 栾雨时, 崔娟娟. 番茄中与致病密切相关 miRNA 的挖掘及特性分析. 遗传, 2013, 36(1):69-76.
[17] 董云, 王毅, 靳丰蔚, 等. 油菜 Bna-miR169d 基因的分离与过表达初步分析. 西北农业学报, 2016, 25(12):1809-1815.
[18] 刘志祥, 曾超珍, 谭晓风. 杨树 MIR169 基因家族分子进化分析. 遗传, 2013, 35(11):1307-1316.
[19] 方辉, 曲俊杰, 孙嘉曼, 等. 葡萄 miR169 及其靶基因的生物信息学分析. 南方农业学报, 2017, 48(8):1329-1334.
[20] Donati G, Gatta R, Dolfini D, et al. An NF-Y-dependent switch of positive and negative histone methyl marks on CCAAT promoters. PLoS ONE, 2008, 3(4):e2066.
[21] Nelson D E, Repetti P P, Adams T R, et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences, 2007, 104(42):16450-16455.
[22] Sinha S, Maity S N, Lu J F, et al. Recombinant rat CBF-C,the third subunit of CBF/NFY,allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proceedings of the National Academy of Sciences, 1995, 92(5):1624-1628.
[23] Li W X, Oono Y, Zhu J H, et al. The Arabidopsis NFYA 5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell, 2008, 20(8):2238-2251.
doi: 10.1105/tpc.108.059444
[24] Guo Z L, Kuang Z, Wang Y, et al. PmiREN:a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Research, 2020, 48(D1):1114-1121.
[25] Chen C J, Chen H, Zhang Y, et al. TBtools-an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009
[26] Crooks G E, Hon G, Chandonia J M, et al. WebLogo:a sequence logo generator. Genome Research, 2004, 14(6):1188-1190.
doi: 10.1101/gr.849004 pmid: 15173120
[27] Dai X B, Zhuang Z H, Zhao P X. psRNATarget:a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 2018, 46(W1):49-54.
[28] Zhang Z H, Teotia S, Tang J H, et al. Perspectives on microRNAs and phased small interfering RNAs in maize (Zea mays L.):functions and big impact on agronomic traits enhancement. Plants, 2019, 8(6):1-17.
doi: 10.3390/plants8010001
[29] Devos K M, Wang Z M, Beales J, et al. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theoretical and Applied Genetics, 1998, 96(1):63-68.
doi: 10.1007/s001220050709
[30] 徐妙云, 朱佳旭, 张敏, 等. 植物miR169/NF-YA调控模块研究进展. 遗传, 2016, 38(8):700-706.
[31] 戴晓峰, 肖玲, 武玉花, 等. 植物脂肪酸去饱和酶及其编码基因研究进展. 植物学报, 2007, 24(1):105-113.
[1] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[2] Zhao Xunchao,Xu Jingyu,Gai Shengnan,Wei Yulei,Xu Xiaoxuan,Ding Dong,Liu Meng,Zhang Jinjie,Shao Wenjing. Identification of Stearyl -ACP Desaturase Gene (SbSAD) Family and Their Expression Analysis at Different Developmental Stages in Sorghum [J]. Crops, 2020, 36(2): 20-27.
[3] Song Jian,Cao Xiaoning,Wang Haigang,Chen Ling,Wang Junjie,Liu Sichen,Qiao Zhijun. Identification and Expression Analysis of ASR Family Genes in Setaria italica [J]. Crops, 2019, 35(6): 33-42.
[4] Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie. Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress [J]. Crops, 2019, 35(4): 183-190.
[5] Lü Liangjie,Chen Xiyong,Zhang Yelun,Liu Qian,Wang Limei,Ma Le,Li Hui. Bioinformatics Identification of GASA Gene Family Expression Profiles in Wheat [J]. Crops, 2018, 34(6): 58-67.
[6] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[7] Ying Zhang,Pengyu Liu,Xue Bai,Yang Yang,Yueying Li. Expression and Bioinformatics Analysis of CsWRKY23 Gene in Cucumber [J]. Crops, 2017, 33(5): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!