Crops ›› 2018, Vol. 34 ›› Issue (4): 53-61.doi: 10.16035/j.issn.1001-7283.2018.04.010

Previous Articles     Next Articles

Cloning and Expression of ScHAK10 Gene in Sugarcane

Luo Haibin1,Jiang Shengli1,Huang Chengmei1,Cao Huiqing1,Deng Zhinian2,Wu Kaichao2,Xu Lin2,Lu Zhen1,Wei Yuanwen1   

  1. 1 Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning 530007, Guangxi, China
    2 Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement of Guangxi, Ministry of Agriculture and Rural Affairs, Nanning 530007, Guangxi, China
  • Received:2018-01-25 Revised:2018-06-15 Online:2018-08-15 Published:2018-08-23

Abstract:

To explore the function of ScHAK10 in Sugarcane HAK gene family and molecular response mechanism under drought stress, the gene ScHAK10 coding sequence (CDS) from the ROC22 was cloned by homologous cloning. Sequencing and bioinformatics analysis indicated that ScHAK10 sequence obtained was 2 433bp in length, coding 810 amino acids, the molecular weight of ScHAK10 was 89.83kD, isoelectric point (pI) was 8.46, hydrophobic basic protein was prediction. Sequence comparison with maize (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench] and other crops showed that ScHAK10 gene was highly homologous with that of other species. ScHAK10 protein contains multiple trans-membrane domains so that it is predicted to be located on the cytoplasmic membrane. Secondary structure analysis showed that it had alpha helix (38.15%), extended long chain (19.26%) and irregular curling (37.16%). Prediction of protein function showed that it may be involved in biological reactions such as transcription, signal transduction, and immune responses. Real-time PCR result indicated that ScHAK10 expressed in different tissues, the highest expression in leaf, followed by stem, and the lowest in root. ScHAK10 gene expression was up-regulated by drought stress. According to the deepening of the stress level, the expression of ScHAK10 rose initially, and then dropped, and decreased after rewaterring. These results indicated that contributes were made for further illustrating its function and its molecular mechanism in the regulation of sugarcane drought.

Key words: Sugarcane, Potassium transporter gene (HAK), Gene cloning, Bioinformatics analysis, Gene expression

Fig.1

RT-PCR amplification electrophoresis results of ScHAK10 gene M:DL2000 DNA Marker;1:ScHAK10;2:ScHAK10"

Fig.2

Nucleotide sequences in coding regions of ScHAK10 gene and their deduced amino acid sequences"

Table 1

Homology analysis between ScHAK10 gene and HAK gene from other species"

登录号Accession No. 物种Species 同源性Homology (%) 基因Gene
XM_021449505.1 高粱 95 potassium transporter 10
KF815907.1 玉米 94 high-affinity potassium transporter10
XM_004965768.3 小米 90 potassium transporter 10
XM_015788218.1 水稻 87 potassium transporter 10
XM_020332943.1 山羊草 86 potassium transporter 10
XM_003563544.3 二穗短柄草 85 potassium transporter 10
XM_010943891.2 油棕 80 potassium transporter 10

Fig.3

Prediction for hydrophily hydrophobicity of ScHAK10 protein||| Horizontal axis indicate amino acid position; the hydrophobic position and hydrophilic position are plotted above and below the ordinate, respectively"

Fig.4

ScHAK10 protein transmembrane region analyzed by TMHMM software"

Fig.5

ScHAK10 signal peptide analyzed by SignalP 4.1 Server"

Fig.6

Predicted secondary structure of ScHAK10 protein"

Fig.7

Predicted tertiary structure of ScHAK10 protein"

Table 2

Functional category for ScHAK10 protein"

功能分类Functional category 概率Probability 比值
Odds
基因本体分类
Gene ontology category
概率
Probability
比值
Odds
运输和结合Transport and binding 0.773 1.885 电压门控性离子通道Voltage-gated ion channel 0.279 12.682
嘌呤和嘧啶Purines and pyrimidines 0.331 1.362 转录Transcription 0.219 1.711
辅酶合成Biosynthesis of cofactors 0.210 2.917 信号传导Signal transducer 0.205 0.958
脂肪酸代谢Fatty acid metabolism 0.017 1.308 离子通道Ion channel 0.169 2.965
运输Translation 0.071 1.614 阳离子通道Cation channel 0.146 3.174

Fig.8

Phylogenetic tree based on HAK gene The tree is constructed using the neighbor-joining method with bootstrap values calculated from 500 resamplings. Numbers at the nodes indicate the bootstrap values, The scale bar represents 0.05 substitution per nucleotide position"

Fig.9

Multiple amino-acid alignment of ScHAK10 with other HAK proteins"

Fig.10

Relative expression of ScHAK10 gene in different tissues of sugarcane Error bars represent the standard error of each treating group (n=3). The same below"

Fig.11

Expression profiles of ScHAK10 under drought stress"

[1] 姚瑞亮, 李杨瑞, 陈如凯 . 广西旱坡地甘蔗高产栽培措施的探讨. 广西农业生物科学, 1999,18(S1):29-31.
[2] 陈如凯, 张木清, 陆裔波 . 甘蔗品种的御旱性差异研究. 甘蔗, 1996,3(1):1-4.
[3] Malik K B . Some anatomical characteristics of sugarcane varieties in relation to drought resistance. Agriculture Research, 1986,11(1):43-49.
[4] 罗海斌, 曹辉庆, 魏源文 , 等. 干旱胁迫下甘蔗苗期根系全长cDNA文库构建及EST序列分析. 南方农业学报, 2012,43(6):733-737.
[5] Maser P, Thomine S, Schroeder J I , et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 2001,126(4):1646-1667.
doi: 10.1104/pp.126.4.1646 pmid: 11500563
[6] Yang Z F, Gao Q S, Sun Ch S , et al. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). Journal of Genetics and Genomics, 2009,36(3):161-172.
doi: 10.1016/S1673-8527(08)60103-4
[7] Ahn S J, Shin R, Schachtman D P . Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake . Plant Physiology, 2004,134(3):1135-1145.
doi: 10.1104/pp.103.034660 pmid: 14988478
[8] Gierth M, Mäser P, Schroeder J I . The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots . Plant Physiology, 2005,137(3):1105-1114.
doi: 10.1104/pp.104.057216
[9] Fu H H, Luan S . AtHUPl:a dual-affinity K+ transporter from Arabidopsis . Plant Cell, 1998,10(1):63-73.
[10] Santa-Maria G E, Rubio F, Dubcovsky J , et al. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997,9(12):2281-2289.
doi: 10.1105/tpc.9.12.2281
[11] Kim E J, Kwak J M, Uozumi N , et al. AtKUP1:an Arabidopsis gene encoding high-affinity potassium trans-port activity. Plant Cell, 1998,10(1):51-62.
doi: 10.1105/tpc.10.1.51
[12] Zhang Z, Zhang J, Chen Y , et al. Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Moleculur Biology Reports, 2012,39(8):8465-8473.
doi: 10.1007/s11033-012-1700-2
[13] Yang Z, Gao Q, Sun C , et al. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sative L.). Journul of Genetics and Genomics, 2009,36(3):161-172.
doi: 10.1016/S1673-8527(08)60103-4
[14] Bañuelos M A, Garciadeblas B, Band C , et al. Inventory and functional characterization of the HAK potassium transporters of rice. Physiologia Plantarum, 2002,130(2):784-795.
doi: 10.1104/pp.007781
[15] 张高华, 王鹤, 王旭达 , 等. 獐茅HAK基因表达调控区的分离及其在水稻中的功能分析. 遗传, 2012,34(6):742-748.
doi: 10.3724/SP.J.1005.2012.00742
[16] Wang Y H, Garvin D F, Kochian L V . Rapid induction of regulatory and transporter genes in response to phosphorus,potassium,and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Physiologia Plantarum, 2002,130(3):1361-1370.
doi: 10.1104/pp.008854
[17] 王兰 . 璋茅高亲和性K+转运蛋自基因的表达调控 . 大连:大连理工大学, 2009.
[18] Maathuis F J M . The role of monovalent cation transporters in plant responses to salinity. Journal of Experimental Botany, 2016,57(5):1137-1147.
doi: 10.1093/jxb/erj001 pmid: 16263900
[19] Su H, Golldack D, Zhao C S , et al. The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiology, 2002,129(4):1482-1493.
doi: 10.1104/pp.001149
[20] 宋毓峰, 张良, 董连红 , 等. 植物KUP/HAK/KT家族钾转运体研究进展. 中国农业科技导报, 2013,15(6):92-98.
doi: 10.3969/j.issn.1008-0864.2013.06.14
[21] 韦丽君 . 甘蔗干旱胁迫的形态结构及生理机制研究. 长沙:湖南农业大学, 2014.
[22] 苏炜华, 刘峰, 黄珑 , 等. 甘蔗Ca2+/H+反向运转体基因的克隆与表达分析 . 作物学报, 2016,42(7):1074-1082.
doi: 10.3724/SP.J.1006.2016.01074
[23] 鲁黎明, 杨铁钊 . 烟草钾转运体基因NtHAK1的克隆及表达模式分析. 核农学报, 2011,25(3):469-476.
[24] Sato Y, Nanatani K, Hamamoto S , et al. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a KUP/HAK/KT-type Escherichia coli potassium transporter . Journal of Biochemistry, 2014,155(5):315-323.
doi: 10.1093/jb/mvu007
[25] Elumalai R P, Nagpal P, Reed J W . A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell, 2002,14(1):119-131.
[26] Very A A, Sentenac H . Molecular mechanisms and regulation of K+ transport in higher plants . Annual Review of Plant Biology, 2003,54(1):575-603.
doi: 10.1146/annurev.arplant.54.031902.134831
[27] Gupta M, Qiu X H, Wang L , et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genetics and Genomics, 2008,208(5):437-452.
[28] 晁毛妮, 张志勇, 宋海娜 , 等. 陆地棉Pht1家族成员的全基因组鉴定及表达分析. 棉花学报, 2017,29(1):59-69.
[29] 张选 . 胡杨在盐碱胁迫下的生理响应及其钾离子转运基因HAK克隆和功能分析. 北京:中国科学院大学, 2015.
[30] Osakabe Y, Arinaga N, Umezawa T , et al. Osmotic stressresponses and plant growth controlled by potassium transporters in Arabidopsis. The Plant Cell, 2013,25(2):609-624.
doi: 10.1105/tpc.112.105700
[1] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings [J]. Crops, 2018, 34(4): 131-137.
[2] Xiaoming Wang,Yiming Qin,Dacheng Li,Junfeng Lan,Hongjin Huang,Liangman Zhang,Xi Wei. Present Situation and Development Countermeasure for Production Technology of Green Double High Sugarcane in Laibin City, Guangxi Province [J]. Crops, 2017, 33(5): 14-20.
[3] Zhequn Cao,Furong Xiao,Shuying Chen,Lilian He,Fusheng Li. Identification of Cold Tolerance in Seven Wild Sugarcane and Three Offsprings at Seedling Stage [J]. Crops, 2017, 33(5): 43-48.
[4] Xuemei Li,Chang Liu,Qianwen Liu,Yudi Zhang,Xuemei Li. The Effects of PEG Pretreatment on the Isozymes and Expression of Antioxidant Enzymes in Rice Leaves under Water Stress [J]. Crops, 2016, 32(6): 107-111.
[5] Jingyu Shi,Lilian He,Xianhong Wang,Fusheng Li. Optimization of the Total Flavonoids Extraction Technology in Sugarcane Leaves [J]. Crops, 2016, 32(5): 19-24.
[6] Yu Li,Wenyin Zheng,Chun Feng,Rongfu Wang,Juan Li. Analysis of FeSOD Gene Expression in Normal Wheat Yannong 19 Seedlings under Abiotic Stress [J]. Crops, 2016, 32(4): 75-79.
[7] Haiyang Hu,Qingqing Fu,Lilian He,Fusheng Li. Influence of New Type Fertilizer Haishengyuan on Cold Resistance of Sugarcane [J]. Crops, 2016, 32(3): 73-78.
[8] Xinhua Pang,Pengjin Zhu,Quanguang Zhou,Qinliang Tan,Chun Liang,Kewei Ou,Qiang Huang,Jingli Ou. Comparative Study of Introduced Sugarcane Varieties (Lines) in Guangxi [J]. Crops, 2016, 32(2): 73-78.
[9] . [J]. Crops, 2013, 29(3): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .