Crops ›› 2017, Vol. 33 ›› Issue (5): 38-42.doi: 10.16035/j.issn.1001-7283.2017.05.007

Previous Articles     Next Articles

Expression and Bioinformatics Analysis of CsWRKY23 Gene in Cucumber

Zhang Ying1,Liu Pengyu2,Bai Xue1,Yang Yang1,Li Yueying1   

  1. 1College of Life Science,Shenyang Normal University,Shenyang 110034,Liaoning,China
    2Shenyang Institute of Food Control,Shenyang 110136,Liaoning,China
  • Received:2017-07-03 Revised:2017-08-25 Online:2017-10-15 Published:2018-08-26
  • Contact: Yueying Li

Abstract:

WRKY transcription factor is a great gene family that exists in higher plants and widely involved in plant biotic stress and abiotic stress. The cDNA of CsWRKY23 was cloned by RT-PCR, and sequence motif, gene structure and phylogenetic tree were done. The gene expression of CsWRKY23 were detected by qRT-PCR. The results showed that the length of CsWRKY23 open reading frame was 1 431bp, containing 5 exons and 4 introns; encoding 476 amino acids, and there were 2 WRKY motifs, protein molecular weight was 52.2kDa and its iso-electric point was 6.43; phylogenetic analysis showed CsWRKY23 and AtWRKY33 were homologous. Furthermore, qRT-PCR results showed that CsWRKY23 respond to low temperature and up-regulated in leaf and root. In addition, this study provided useful information for further studying this gene and its function under the abiotic stress.

Key words: Cucumber, WRKY, Bioinformatics, Quantitive real time PCR

Fig.1

Analysis of CsWRKY23 structure (A) and prediction of WRKY domain (B)"

Fig.2

Analysis of hydrophobic or hydrophilic property of CsWRKY23"

Fig.3

Prediction of three-dimensional structure of CsWRKY23"

Table 1

Prediction of CsWRKY23 cis-acting elements"

序号Code 元件Element 位置Location 序列Sequence 功能Function
1 WRKY71OS 47 TGAC WRKY转录因子的结合位点
2 TATABOXOSPAL 74 TATTTAA 转录起始位点上游通用转录因子结合的主要的启动原件
3 WRKY71OS 98 TGAC WRKY转录因子的结合位点
4 CAATBOX1 166 CAAT 增强结合蛋白因子
5 CBFHV 225 RYCGAC 响应低温的CBF转录因子,AP2结构域的结合位点
6 MYBCORE 530 CNGTTR MYB转录因子结合位点
7 WRKY71OS 584 TGAC WRKY转录因子的结合位点
8 WRKY71OS 1386 TGAC WRKY转录因子的结合位点
9 ABREATCONSENSUS 1668 YACGTGGC ABA响应过程中的顺势作用原件
10 WRKY71OS 1721 TGAC WRKY转录因子的结合位点
11 WRKY71OS 1749 TGAC WRKY转录因子的结合位点
12 WRKY71OS 1977 TGAC WRKY转录因子的结合位点

Fig.4

Phylogenetic analysis of CsWRKY23"

Table 2

Primers used for PCR assays"

基因Gene 登录号Accession number 引物序列Primer sequence 用途Utility
CsWRKY23 GU984022 F:ATGAGTAACATAAACCAAAC R:CTATGATAGAAATGAGTTG cDNA克隆全长引物
CsWRKY23 GU984022 F:CACTACCTACGAAGGCAAAC R:TGGCTGGTGACACTGGAT qRT-PCR引物
CsActin AAZ74666 F:TCCACGAGACTACCTACAACTC R:CGGAATGGTGAAGGCTGGAT qRT-PCR引物

Fig.5

RT-PCR product of CsWRKY23"

Fig.6

Expression of CsWRKY23 of leaves and roots of cucumber at low temperature"

[1] Rushton P J, Somssich I E, Ringler P , et al. WRKY transcription factors. Trends in Plant Science 2010,15(5):247-258.
doi: 10.1016/j.tplants.2010.02.006
[2] 张颖, 蒋卫杰, 凌键 , 等. WRKY转录因子表达谱的研究进展. 基因组学与应用生物学, 2009,28(4):1-6.
doi: 10.3969/gab.028.000803
[3] 陈思雀, 翁群清, 曹红瑞 , 等. WRKY转录因子在生物和非生物胁迫中的功能和调控机理的研究进展. 农业生物技术学报, 2017,25(4):668-682.
doi: 10.3969/j.issn.1674-7968.2017.04.017
[4] Samad A F A, Sajad M, Nazaruddin N , et al. MicroRNA and transcription factor:key players in plant regulatory network. Frontiers in Plant Science, 2017,8:565.
doi: 10.3389/fpls.2017.00565 pmid: 5388764
[5] Huang S, Li R, Zhang Z , et al. The genome of the cucumber,Cucumis sativus L. Nature Genetics, 2009,41:1275-1281.
doi: 10.1038/ng.475 pmid: 19881527
[6] Zhu J, Dong C H, Zhu J K . Interplay between cold-responsive gene regulation,metabolism and RNA processing during plant cold acclimation. Current Opinion in Plant Biology, 2007,10(3):290-295.
doi: 10.1016/j.pbi.2007.04.010
[7] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△CT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[8] Eulgem T, Rushton P J, Robatzek S , et al. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000,5(5):199-205.
doi: 10.1016/S1360-1385(00)01600-9 pmid: 10785665
[9] Ling J, Jiang W, Zhang Y , et al. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC genomics, 2011,12(1):471.
doi: 10.1186/1471-2164-12-471 pmid: 3191544
[10] Jiang J, Ma S, Ye N , et al. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 2017,59(2):86-101.
doi: 10.1111/jipb.12513 pmid: 27995748
[11] 喻景权, 周杰 . “十二五”我国设施蔬菜生产和科技进展及其展望.中国蔬菜, 2016(9):18-30.
[12] 陈明亮, 陈大洲, 胡兰香 , 等. 东乡野生稻耐冷分子机制研究进展.作物杂志, 2016(4):15-19.
doi: 10.16035/j.issn.1001-7283.2016.04.003
[13] 秦东玲, 李钊, 尉菊萍 , 等. 作物抗冷性及其化学控制机理研究进展.作物杂志, 2016(4):26-35.
doi: 10.16035/j.issn.1001-7283.2016.04.005
[14] Tripathi P, Rabara R C, Rushton P J . A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta, 2014,239(2):255-266.
doi: 10.1007/s00425-013-1985-y
[15] Kim C Y , Vo K T X,Nguyen C D,et al.Functional analysis of a cold-responsive rice WRKY gene,OsWRKY71. Plant Biotechnology Reports, 2016,10(1):12-23.
[16] 魏小春, 姚秋菊, 原玉香 , 等. 辣椒CaWRKY13基因克隆及非生物胁迫下表达分析. 分子植物育种, 2016,14(10):2582-2588.
[17] Zhang Y, Yu H, Yang X , et al. CsWRKY46,a WRKY transcription factor from cucumber,confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiology and Biochemistry, 2016,108:478-487.
doi: 10.1016/j.plaphy.2016.08.013
[18] 付乾堂, 余迪求 . 拟南芥AtWRKY25、AtWRKY26和AtWRKY33在非生物胁迫条件下的表达分析. 遗传, 2010,32(8):848-856.
doi: 10.3724/SP.J.1005.2010.00848
[19] Zheng Z, Qamar S A, Chen Z , et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant Journal, 2006,48(4):592-605.
doi: 10.1111/tpj.2006.48.issue-4
[20] Zhou J, Wang J, Zheng Z Y , et al. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. Journal of Experimental Botany, 2015,66(15):4567-4583.
doi: 10.1093/jxb/erv221
[1] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[2] Zhiwei Zhang,Xiaojing Li,Jinrui Bai,shuai Chen. Effects of CO2 on Cucumber Leaf Photosynthetic Rate and Stomatal Characters under High Temperature [J]. Crops, 2016, 32(5): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .