Crops ›› 2023, Vol. 39 ›› Issue (3): 238-245.doi: 10.16035/j.issn.1001-7283.2023.03.033

Previous Articles     Next Articles

Effects of Nitrogen, Phosphorus and Potassium Application on Available Nutrients and Fungal Diversity in Tobacco-Growing Soil

Li Hang1(), Su Mengdi1, Huang Langping1, Ma Xiao2, Wang Huanhuan1, Ao Fei2, Hu Litao2(), Zhang Songtao1()   

  1. 1College of Tobacco Science, Henan Agricultural University/Key Laboratory of Tobacco Cultivation in Tobacco Industry, Zhengzhou 450002, Henan, China
    2Fengdu Branch of Chongqing, National Tobacco Corporation, Chongqing 408200, China
  • Received:2022-08-01 Revised:2022-08-30 Online:2023-06-15 Published:2023-06-16

Abstract:

Nitrogen, phosphorus and potassium fertilizer affect tobacco leaf quality by changing soil nutrients, but the mechanism of its effect on fungal diversity in tobacco-growing soil is unclear. Five treatments were set in the field experiment, CK (no fertilization), NPK, PK, NK and NP. We adopted high-throughput sequencing method and redundancy analysis to analyze the relationships between soil available nutrients and fungal diversity for providing a theoretical basis of regulating fungal diversity through soil available nutrients. The results showed that NPK, PK, NK and NP treatments had different effects on available nutrients and significantly decreased soil pH at 30 and 60d after transplanting. NPK, PK, NK and NP treatments decreased fungal diversity (30d after transplanting) and richness (60d after transplanting). At the phylum level, NPK, PK, NK and NP treatments altered fungal community structure by changing the relative abundances of Basidiomycota, Ascomycota, Zygomycota, and Chytridiomycota. At the genus level, NPK, PK, NK and NP treatments increased the relative abundances of Trichoderma and Penicillium at 30d after transplanting (except PK treatment), while decreased the relative abundance of Fusarium at 90d after transplanting. Soil available nutrients and pH had significant effects on fungal community composition, among which available phosphorus and alkali-hydrolyzable nitrogen were the main influencing factors.

Key words: Application of NPK, Tobacco-growing soil, Available nutrients, Fungal diversity

Table 1

Fertilizer dosage for different fertilization treatments kg/hm2"

处理
Treatment
硝酸铵
Ammonium nitrate
重过磷酸钙
Superphosphate
硫酸钾
Potassium sulfate
NPK 317.14 245.93 749.10
PK 0.00 245.93 749.10
NK 317.14 0.00 749.10
NP 317.14 245.93 0.00
CK 0.00 0.00 0.00

Table 2

Effects of different fertilization treatments on soil nutrients"

取样时间
Sampling time
处理
Treatment
碱解氮
Alkali-hydrolyzable N (mg/kg)
速效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
pH
移栽后30d
30d after transplanting
NPK 130.68±4.23b 52.59±4.73b 418.16±37.31b 4.59±0.03b
PK 139.65±7.09ab 66.75±1.79a 719.64±43.14a 4.92±0.18ab
NK 153.06±14.77a 49.81±2.32b 454.23±42.78b 4.82±0.11ab
NP 142.89±2.50ab 53.09±3.22b 364.05±54.66b 4.75±0.21ab
CK 130.44±3.64b 48.54±2.63b 418.16±36.64b 5.10±0.37a
移栽后60d
60d after transplanting
NPK 157.82±1.22a 57.39±5.72b 789.20±38.61a 4.61±0.18abc
PK 135.33±11.17b 58.40±7.15ab 766.01±54.66a 4.86±0.09ab
NK 135.94±9.27b 49.30±2.68b 657.79±31.41a 4.53±0.19c
NP 135.04±0.20b 69.02±7.87a 376.93±32.18b 4.57±0.11bc
CK 158.71±9.04a 51.32±4.64b 402.70±30.92b 4.94±0.21a
移栽后90d
90d after transplanting
NPK 139.76±4.08a 49.80±2.86a 675.82±21.88a 4.88±0.07a
PK 142.04±5.22a 55.37±7.15a 665.52±21.86a 4.93±0.19a
NK 144.89±3.50a 48.09±6.88a 441.35±32.80b 4.90±0.20a
NP 144.06±0.81a 55.87±5.77a 433.62±20.65b 4.93±0.02a
CK 137.30±4.27a 50.06±3.93a 379.51±10.93b 5.09±0.20a

Fig.1

Species accumulation curve"

Table 3

Alpha index of fungal community in different fertilization treatments"

取样时间
Sampling time
处理
Treatment
Chao1指数
Chao1 index
覆盖率
Percentage of coverage
香农指数
Shannon index
观察到的物种数
Number of observed species
辛普森指数
Simpson index
移栽后30d
30d after transplanting
NPK 786.40±116.68a 0.9970a 4.32±0.20a 639.03±92.41a 0.88±0.04ab
PK 914.06±38.12a 0.9970a 4.84±0.14a 777.23±71.76a 0.88±0.04ab
NK 796.97±36.16a 0.9966a 3.95±0.27b 606.97±67.69a 0.82±0.07b
NP 848.07±183.73a 0.9968a 4.73±0.71a 694.23±160.23a 0.90±0.04ab
CK 826.68±51.42a 0.9972a 5.19±0.83a 694.07±87.61a 0.93±0.04a
移栽后60d
60d after transplanting
NPK 1014.44±188.14a 0.9958b 4.10±0.29a 790.67±160.36a 0.82±0.05a
PK 777.62±62.94b 0.9970a 3.94±1.01a 635.00±120.79a 0.81±0.10a
NK 889.93±94.58ab 0.9961ab 4.15±0.57a 683.00±43.65a 0.84±0.07a
NP 875.76±148.95ab 0.9965ab 3.95±1.38a 662.70±212.53a 0.80±0.11a
CK 1075.49±33.92a 0.9955b 4.32±0.38a 828.67±6.67a 0.82±0.04a
移栽后90d
90d after transplanting
NPK 1056.26±98.38a 0.9956b 4.25±0.52a 806.57±115.87a 0.83±0.05a
PK 1130.52±232.34a 0.9965a 5.08±1.43a 953.40±285.68a 0.86±0.09a
NK 999.44±95.38a 0.9961ab 4.00±0.31a 790.97±102.15a 0.79±0.02a
NP 1040.94±143.50a 0.9957ab 4.19±1.32a 810.23±180.68a 0.76±0.19a
CK 1104.55±84.91a 0.9961ab 4.97±0.61a 893.53±73.02a 0.86±0.04a

Fig.2

Venn diagram of effects of different fertilization treatments on soil fungal OTUs"

Fig.3

Relative abundances of the fungal phylum under different treatments (a) and relative abundances of dominant phyla in top four under different treatments (b)"

Fig.4

Relative abundances of the fungal genus under different treatments (a) and relative abundances of dominant fungal genera (Top 1, 2, 3, 6) under different treatments (b)"

Fig.5

Relationship between relative abundance of fungal community at phyluml genus and soil chemical factors by RDA"

[1] Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15 (10):579-590.
doi: 10.1038/nrmicro.2017.87 pmid: 28824177
[2] 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康. 中国科学:生命科学, 2021, 51(1):1-11.
[3] 高芬, 闫欢, 王梦亮, 等. 土壤微生物菌群变化对土传病害的影响及生物调控. 中国农学通报, 2020, 36(13):160-164.
doi: 10.11924/j.issn.1000-6850.casb19010085
[4] 黄新琦, 蔡祖聪. 土壤微生物与作物土传病害控制. 中国科学院院刊, 2017, 32(6):593-600.
[5] 黄龙, 包维楷, 李芳兰, 等. 土壤结构和植被对土壤微生物群落的影响. 应用与环境生物学报, 2021, 27(6):1725-1731.
[6] 汤玉洁, 刘俊萍, 储国林, 等. 不同薄壳山核桃品种的根际土壤真菌群落结构研究. 河南农业大学学报, 2022, 56(4):622- 633.
[7] 黄桥明. 马尾松林恢复过程中微生物来源土壤有机质的贡献及其影响因素. 福州:福建师范大学, 2020.
[8] 马利平. 生物有机肥替代化肥减施对大豆土壤微生物多样性的影响. 哈尔滨:黑龙江大学, 2019.
[9] 翁泽斌. 不同施钾水平对烟草根际微生物生态及烟草生长的影响. 福州:福建农林大学, 2017.
[10] 张润芝. 氮肥调控玉米/大豆间作生产力及养分吸收和土壤微生物作用机理的研究. 哈尔滨:东北农业大学, 2020.
[11] 马垒, 赵文慧, 郭志彬, 等. 长期不同磷肥施用量对砂姜黑土真菌多样性、群落组成和种间关系的影响. 生态学报, 2019, 39(11):4158-4167.
[12] 白岚方. 施氮水平对青贮玉米根系空间微生物组成及氮素利用影响机制的研究. 呼和浩特:内蒙古大学, 2021.
[13] Allison S D, Hanson C A, Treseder K K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biology and Biochemistry, 2007, 39 (8):1878-1887.
doi: 10.1016/j.soilbio.2007.02.001
[14] Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10):1340-1351.
doi: 10.1038/ismej.2010.58
[15] Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15):5111-5120.
doi: 10.1128/AEM.00335-09 pmid: 19502440
[16] Jorquera M A, Martínez O A, Marileo L G, et al. Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two chilean andisol pastures. World Journal of Microbiology and Biotechnology, 2014, 30(1):99-107.
doi: 10.1007/s11274-013-1427-9 pmid: 23842756
[17] Lin X G, Feng Y Z, Zhang H Y, et al. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environmental Science and Technology, 2012, 46(11):5764- 5771.
doi: 10.1021/es3001695 pmid: 22582875
[18] 周晶. 长期施氮对东北黑土微生物及主要氮循环菌群的影响. 北京: 中国农业大学, 2017.
[19] 江西省烟叶科学研究所. 一种田间试验土壤取样方法:CN103245527A. 北京: 中华人民共和国国家知识产权局, 2013.
[20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[21] Li S, Deng Y, Wang Z, et al. Exploring the accuracy of amplicon- based internal transcribed spacer markers for a fungal community. Molecular Ecology Resources, 2019, 20(1):170-184.
doi: 10.1111/men.v20.1
[22] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131
[23] Lobo. Basic local alignment search tool (blast). Journal of Molecular Biology, 2008, 215(3):403-410.
doi: 10.1016/S0022-2836(05)80360-2
[24] 李铭杰, 周志杰, 邢礼军, 等. 北苍术根区土壤中AM真菌多样性及其与土壤养分相关性分析. 中国生物防治学报, 2021, 37(6):1288-1297.
doi: 10.16409/j.cnki.2095-039x.2021.06.019
[25] 朱芙蓉, 周浓, 杨敏, 等. 不同丛枝菌根真菌对滇重楼幼苗根际土壤养分的影响. 中国实验方剂学杂志, 2020, 26(22):86- 95.
[26] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[27] 郑梅迎. 模拟酸雨和施氮对遵义植烟土壤酸化效应研究. 北京: 中国农业科学院, 2020.
[28] Sarah J K, David W, Keith W T G, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 2005, 38(5):898-911.
doi: 10.1016/j.soilbio.2005.08.006
[29] Ning Q, Chen L, Jia Z J, et al. Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture,Ecosystems and Environment, 2019, 293(C):106837.
doi: 10.1016/j.agee.2020.106837
[30] 张宇亭. 长期施肥对土壤微生物多样性和抗生素抗性基因累积的影响. 重庆:西南大学, 2017.
[31] 刘东海, 张学江, 王鹏, 等. 不同施肥处理对小麦根际土壤真菌多样性及根腐病的影响. 湖北农业科学, 2020, 59(21):30-34,50.
[32] Lundell T K, Makela M R, Hilden K. Lignin-modifying enzymes in filamentous basidiomycetes: Ecological, functional and phylogenetic review. Journal of Basic Microbiology, 2010, 50 (1):5-20.
doi: 10.1002/jobm.200900338 pmid: 20175122
[33] 谭仲廷, 李安定, 杨瑞, 等. 百香果连作对土壤真菌群落结构的影响. 分子植物育种, 2022, 20(4):1373-1382.
[34] Xiong J B, Peng F, Sun H B, et al. Divergent responses of soil fungi functional groups to short-term warming. Microbial Ecology, 2014, 68(4):708-715.
doi: 10.1007/s00248-014-0385-6 pmid: 24553914
[35] 冯万艳, 赵燕珍, 谭健晖, 等. 马尾松与粘盖乳牛肝菌菌根共生体形成过程. 菌物学报, 2019, 38(10):1620-1630.
[36] 杨祝良. 中国鹅膏属真菌资源. 中国菌物学会第三届会员代表大会暨全国第六届菌物学学术讨论会论文集. 北京: 中国菌物学会, 2003:466.
[37] Junsheng H, Bin H, Kaibin Q, et al. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. European Journal of Soil Biology, 2016, 72(3):35-41.
doi: 10.1016/j.ejsobi.2015.12.007
[38] Kivlin S N, Hawkes C V. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environmental Microbiology, 2016, 18 (12):4662-4673.
doi: 10.1111/1462-2920.13342 pmid: 27130750
[39] 邓娇娇, 周永斌, 殷有, 等. 辽东山区两种针叶人工林土壤真菌群落结构特征. 北京林业大学学报, 2019, 41(9):130-138.
[40] Liu S, Wang Z Y, Niu J F, et al. Changes in physicochemical properties, enzymatic activities, and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng). Plant and Soil, 2021, 463(6):427-446.
doi: 10.1007/s11104-021-04911-2
[41] 魏帛轩. 氮磷钾不同施肥组合对大豆连作土壤养分及土壤微生物群落的影响. 延边:延边大学, 2021.
[42] Wang J, Shi X, Zheng C, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Science of the Total Environment, 2020, 755:142449.
doi: 10.1016/j.scitotenv.2020.142449
[43] Beauregard M S, Hamel C, Atul-Nayyar, et al. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microbial Ecology, 2010, 59(2):379-389.
doi: 10.1007/s00248-009-9583-z pmid: 19756847
[44] Liu Z F, Fu B J, Zheng X X, et al. Plant biomass, soil water content and soil N: P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biology and Biochemistry, 2009, 42(3):445-450.
doi: 10.1016/j.soilbio.2009.11.027
[45] 袁玲, 方德华, 汪智慧, 等. 钾对外生菌根真菌的分泌作用及氮、磷、钾含量的影响. 生态学报, 2001, 21(2):254-258.
[46] 潘争艳, 傅俊范, 马亮, 等. 辽宁省药用植物根际土壤木霉属真菌的多样性. 浙江大学学报(农业与生命科学版), 2010, 36(4):405-410.
[47] Soltani J, Hosseyni M M S. Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens. Current Microbiology, 2015, 70(4):580-586.
doi: 10.1007/s00284-014-0753-y pmid: 25527365
[48] 张向民. 镰刀菌属分类学研究历史与现状. 菌物研究, 2005, 3(2):59-62.
[49] 王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响. 生态学报, 2013, 33(10):3103-3113.
[50] 王丽霞, 郭宏宇, 霍玉珠, 等. 增温和增氮对天津滨海湿地芦苇凋落物分解微生物群落组成和多样性的影响. 天津师范大学学报(自然科学版), 2022, 42(1):37-44.
[51] 陈小均, 燕嗣皇, 吴石平. 氮磷钾肥对木霉菌丝生长和产孢的影响. 贵州农业科学, 2005, 33(2):34-35.
[52] 杨金燕, 姜于兰, 杨亚曦, 等. 腐质霉属真菌分类的研究进展. 贵州农业科学, 2015, 43(8):126-130.
[1] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!