Crops ›› 2023, Vol. 39 ›› Issue (1): 219-225.doi: 10.16035/j.issn.1001-7283.2023.01.033

Previous Articles     Next Articles

Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco

Wang Yuan1(), Wang Jiming2, Nian Fuzhao1, Zheng Yuanxian2, Xu Yinlian2, Li Cuifen2, Cui Yongquan3, Zhang Qifu2, Zhao Leifeng1, Liao Xiaolin4, He Yuansheng2()   

  1. 1College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2Lincang Branch Company of Yunnan Tobacco Company, Lincang 677099, Yunnan, China
    3College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    4College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2021-10-14 Revised:2022-10-17 Online:2023-02-15 Published:2023-02-22

Abstract:

In order to explore the effects of adding biochar on soil fertility and flue-cured tobacco growth on the basis of conventional fertilization, a field experiment was conducted to study the related indexes of soil and flue-cured tobacco growth under the conditions of no application of biochar (CK), application of biochar both in flue-cured tabacco season and winter and spring seasons (T1) and only adding biochar in flue-cured tobacco season (T2). The results showed that adding biochar could significantly increased soil pH and the contents of available nutrient, and the effects of T1 treatment were the best. Application of biochar significantly increased MWD, GMD and particle size aggregates larger than 0.250mm, but there was no significant difference between T1 and T2 treatments. The plant height, maximum leaf length, leaf width, leaf area and the dry matter accumulation of root and leaf were the best in T1 treatment, and the stem girth and stem dry matter accumulation were the largest in T2 treatment. Therefore, the effects of adding biochar in flue-cured tobacco season and winter and spring are better.

Key words: Tobacco, Biochar, Tobacco-growing soil, Soil fertility, Flue-cured tobacco growth

Table 1

Effects of adding biochar on agrochemical properties of tobacco growing soil"

时期
Stage
处理
Treatment
pH 速效氮
Hydrolyzable nitrogen (mg/kg)
速效磷
Available phosphorus (mg/kg)
速效钾
Available potassium (mg/kg)
团棵期Rosette stage CK 5.32b 128.00c 25.62c 131.69c
T1 5.59a 203.00a 40.66a 280.55a
T2 5.38b 147.00b 35.03b 251.17b
旺长期
Prosperously growing stage
CK 5.88b 154.00b 25.19b 187.76c
T1 6.08ab 189.00a 26.69b 194.76b
T2 6.28a 184.00a 31.15a 222.62a
现蕾期
Flower budding stage
CK 5.52b 140.00c 67.63c 124.71c
T1 5.70a 194.00a 138.06a 400.92a
T2 5.22c 173.00b 87.18b 283.19b

Table 2

Effects of adding biochar on physical properties of tobacco growing soil"

时期Stage 处理Treatment 容重Bulk density 含水量Water content (%) 孔隙度Porosity (%)
团棵期Rosette stage CK 1.19a 17.67a 54.95b
T1 1.09b 17.99a 59.45a
T2 1.12ab 16.90a 57.70ab
旺长期
Prosperously growing stage
CK 1.21a 14.44a 54.54a
T1 1.10a 13.42a 58.38a
T2 1.14a 14.69a 56.89a
现蕾期
Flower budding stage
CK 0.99a 23.12a 62.53c
T1 0.86c 21.61ab 67.57a
T2 0.92b 19.63b 64.90b

Table 3

Effects of adding biochar on composition of water-stable aggregates in tobacco-growing soil %"

时期
Stage
处理
Treatment
不同粒级(mm)水稳定性团聚体质量分数
The mass fraction of water-stable aggregates with different particle sizes
≥2.000 (2.000,1.000] (1.000,0.500] (0.500,0.250] (0.250,0.106] < 0.106
团棵期Rosette stage CK 38.33b 19.47b 17.61a 8.62b 5.50a 10.47a
T1 47.36a 15.16c 16.34b 9.48a 4.50b 7.16b
T2 47.04a 25.96a 14.38c 5.78c 1.56c 5.28c
旺长期
Prosperously growing stage
CK 21.02b 16.76c 24.76a 15.46a 6.04b 15.96a
T1 26.88a 18.78a 22.46b 12.72c 5.40c 13.76b
T2 25.30a 18.12b 23.22c 14.40b 6.58a 12.38c
现蕾期
Flower budding stage
CK 31.14c 16.24c 21.76a 12.88a 5.76a 12.22a
T1 44.34a 20.28b 17.54b 8.20c 3.52b 6.02c
T2 42.56b 24.08a 16.68c 7.24b 2.58c 6.86b

Table 4

Effects of adding biochar on stability index of water-stable aggregates in tobacco-growing soil"

时期
Stage
处理
Treatment
水稳定性指标
Water stable aggregate
MWD
(mm)
GMD
(mm)
R0.25
(%)
团棵期Rosette stage CK 1.24b 0.89b 84.03c
T1 1.35ab 1.01b 88.34b
T2 1.47a 1.21a 93.16a
旺长期
Prosperously growing stage
CK 0.94b 0.62b 78.00b
T1 1.06a 0.67a 80.84a
T2 1.03a 0.70a 81.04a
现蕾期
Flower budding stage
CK 1.10b 0.76b 82.02b
T1 1.37a 1.07a 90.46a
T2 1.38a 1.08a 90.56a

Table 5

Effects of adding biochar on agronomic traits of flue-cured tobacco"

时期
Stage
处理
Treatment
株高
Plant height
(cm)
茎围
Stem girth
(cm)
有效叶片数
Effective
leaves
最大叶长
Maximum leaf
length (cm)
最大叶宽
Maximum leaf
width (cm)
最大叶面积
Maximum leaf
area (cm2)
旺长期
Prosperously growing stage
CK 77.40b 8.84b 17.40a 64.20b 27.20c 1107.99c
T1 82.80a 8.98b 18.00a 65.80a 29.20a 1219.10a
T2 79.60ab 9.40a 17.80a 64.20b 28.20b 1148.72b
现蕾期
Flower budding stage
CK 92.20b 8.90c 11.80b 87.20b 25.80c 1427.47c
T1 111.20a 9.30b 14.40a 88.60a 28.60a 1607.80a
T2 94.40b 11.20a 11.40b 87.80ab 27.40b 1526.43b

Fig.1

Effects of adding biochar on dry matter accumulation of flue-cured tobacco plant during prosperously growing stage"

Fig.2

Effects of adding biochar on dry matter accumulation of flue-cured tobacco plant during budding stage"

[1] 穆青, 刘洋, 展彬华, 等. 我国植烟土壤主要问题及其防控措施研究进展. 江苏农业科学, 2018, 46(21):16-20.
[2] Mahtab A, Anushka U R, Jung E L, et al. Biochar as a sorbent for contaminant management in soil and water:a review. Chemosphere, 2014, 99:19-33.
doi: 10.1016/j.chemosphere.2013.10.071 pmid: 24289982
[3] 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态. 农业工程学报, 2011, 27(2):1-7.
[4] 包骏瑶, 赵颖志, 严淑娴, 等. 不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果. 浙江农林大学学报, 2018, 35(1):43-50.
[5] 吕波, 王宇函, 夏浩, 等. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异. 中国农业科学, 2018, 51(22):4306-4315.
[6] 张继旭, 张继光, 张忠锋, 等. 秸秆生物炭对烤烟生长发育、土壤有机碳及酶活性的影响. 中国烟草科学, 2016, 37(5):16-21.
[7] 李培培, 汪强, 文倩, 等. 不同还田方式对砂质潮土理化性质及微生物的影响. 生态学报, 2017, 37(11):3665-3672.
[8] 付玉荣, 张衍福, 刘凯, 等. 生物炭对冬小麦土壤理化性质和产量的影响. 济南大学学报(自然科学版), 2022, 36(1):1-8.
[9] 贾辉, 赵亚鹏, 符云鹏, 等. 施用生物炭和秸秆对植烟土壤团聚体稳定性及有机碳分布的影响. 烟草科技, 2020, 53(4):11-19.
[10] 宗胜杰. 生物炭用量对重庆酸性植烟土壤性状及烤烟品质的影响. 郑州:河南农业大学, 2016.
[11] Wang L, Gao C C, Yang K, et al. Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions. Science of the Total Environment, 2021, 782:146824.
doi: 10.1016/j.scitotenv.2021.146824
[12] 鲍士旦. 土壤农化分析. 北京: 中国农业科技出版社, 2000.
[13] 张霞, 张育林, 刘丹, 等. 种植方式和耕作措施对土壤结构与水分利用效率的影响. 农业机械学报, 2019, 50(3):250-261.
[14] 赵冬. 黄土丘陵区植被恢复过程土壤团聚体结构演变特征及其量化表征. 杨凌:中国科学院教育部水土保持与生态环境研究中心, 2017.
[15] 王丽渊, 丁松爽, 刘国顺. 生物质炭土壤改良效应研究进展. 中国土壤与肥料, 2014(3):1-6.
[16] 黄雁飞, 陈桂芬, 熊柳梅, 等. 不同秸秆生物炭对水稻生长及土壤养分的影响. 南方农业学报, 2020, 51(9):2113-2119.
[17] 王冬冬, 徐琪, 杨洋, 等. 基施生物质炭对菜用大豆植株营养吸收及土壤养分供应初报. 大豆科学, 2013, 32(1):72-75.
[18] 武梦娟, 王桂君, 许振文, 等. 生物炭对沙化土壤理化性质及绿豆幼苗生长的影响. 生物学杂志, 2017, 34(2):63-67.
[19] 刘卉, 周清明, 黎娟, 等. 长期定位连续施用生物炭对植烟土壤物理性状的影响. 华北农学报, 2018, 33(3):182-188.
doi: 10.7668/hbnxb.2018.03.027
[20] 陈懿, 陈伟, 林叶春, 等. 生物炭对植烟土壤微生态和烤烟生理的影响. 应用生态学报, 2015, 26(12):3781-3787.
[21] 屠娟丽, 费伟英, 张洁慧. 秸秆生物炭对土壤含水量、有机碳及速效养分含量的影响. 绿色科技, 2017(17):104-106.
[22] Le B Y. Aggregate stability and assessment of soil crustability and erodibility:I. theory and methodology. European Journal of Soil Science, 1996, 47(4):425-437.
doi: 10.1111/j.1365-2389.1996.tb01843.x
[23] 王富华, 黄容, 高明, 等. 生物质炭与秸秆配施对紫色土团聚体中有机碳含量的影响. 土壤学报, 2019, 56(4):929-939.
[24] 肖欣娟, 夏建国, 于正义, 等. 茶渣生物质炭对茶园土壤团聚体及其有机碳分布的影响. 土壤, 2021, 53(3):594-601.
[25] 王成己, 郭学清, 曾文龙, 等. 不同生物质炭用量对烤烟生长和烟叶品质的影响. 南方农业学报, 2019, 50(10):2160-2168.
[26] 肖和友, 李宏图, 杨勇, 等. 烟草废弃物生物质炭对植烟土壤、烤烟生长及经济效益的影响. 湖南农业科学, 2018(6):36-39.
[27] 邱岭军, 张翔, 李亮, 等. 生物炭施用量对土壤特性和烟叶产质量的影响. 安徽农业科学, 2020, 48(18):153-156.
[28] 宋久洋, 刘领, 陈明灿, 等. 生物质炭施用对烤烟生长及光合特性的影响. 河南科技大学学报(自然科学版), 2014, 35(4):68-72.
[29] 赵殿峰, 徐静, 罗璇, 等. 生物炭对土壤养分、烤烟生长以及烟叶化学成分的影响. 西北农业学报, 2014, 23(3):85-92.
[30] 赵红玉, 朱成立, 黄明逸, 等. 生物炭添加量对冬小麦花后干物质积累及转运的影响. 灌溉排水学报, 2021, 40(2):16-23.
[31] 何晓冰, 毛娟, 王晓强, 等. 生物炭基肥与化肥配施对烤烟干物质及养分积累的影响. 贵州农业科学, 2020, 48(3):39-44.
[32] 管恩娜, 管志坤, 杨波, 等. 生物质炭对植烟土壤质量及烤烟生长的影响. 中国烟草科学, 2016, 37(2):36-41.
[1] Wang Dequan, Liu Yang, Liu Jiang, Chen Keling, Wang Yi, Du Chuanyin, Du Yuhai, Ma Xinghua. Research Progress of Furrow and Ridge Rain-Harvesting Farming Technology and its Application Prospects in Flue-Cured Tobacco Production [J]. Crops, 2023, 39(1): 1-5.
[2] Sun Yihe, Zhang Kai, Lu Qifei, Li Songwei, Zhang Bo, Li Jun, Ye Xiefeng, Yao Pengwei, Li Xueli. Suitability Evaluation on Nutrients of Tobacco-Planted Soils in Three Typical Ecological Regions [J]. Crops, 2023, 39(1): 115-121.
[3] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[4] Zhang Yonggang, Ren Zhiguang, Xu Zhiqiang, Liu Jianguo, Zhang Xiaobing, Liu Huabing, Xia Chen, Cheng Changhe. Chemical Quality Evaluation of Flue-Cured Tobacco Based on Maximization of Deviation and BP Neural Network [J]. Crops, 2023, 39(1): 190-195.
[5] Li Diqin, Yao Shaoyun, Wang Qing, Yi Ke, Liu Yiyun, Tang Xiaoming, Peng Yuanyuan, Fu Changwu. Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings [J]. Crops, 2023, 39(1): 201-206.
[6] Jin Mingke, Chen Yongwei, Wu Yongbing, Yang Weili, He Zhengchuan, Zhao Mingqin. Effects of Drying Temperature on Nitrogen Transformation Mechanism of Cigar Tobacco during Discoloration Period [J]. Crops, 2023, 39(1): 76-83.
[7] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[8] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[9] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[10] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[11] Zhu Lin, Cao Xiang, Deng Xiaohua, Hu Risheng, Pei Xiaodong, Xiang Shipeng, Xiao Zhijun, Wang Weimin, Zhang Cheng, Jiang Zhimin. Characteristics of Water Loss and Pigment Degradation of Xiangyan No.7 Tobacco Leaves during Curing Process [J]. Crops, 2022, 38(5): 174-179.
[12] Jia Guotao, Zhang Junling, Wei Zhuangzhuang, Yuan Qishan, Wang Baolin, Wang Xiaoyu, Ma Shengtao, Yang Xinling, Zhang Ziying, Zhang Shiying, Jia Shiwei, Chen Yang, Liu Huimin. Research on the Regional Characteristics of Contents of Free Amino Acids in Flue-Cured Tobacco Based on Factor Analysis and Cluster Analysis [J]. Crops, 2022, 38(5): 208-214.
[13] Dong Linlin, Shen Mingxing, Shi Linlin, Shen Yuan, Wang Haihou, Lu Changying. The Effects of Biochar Combined with Earthworm Cast Application on Rice Yield and Nutrient Uptake [J]. Crops, 2022, 38(5): 69-77.
[14] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
[15] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!