Crops ›› 2023, Vol. 39 ›› Issue (6): 252-256.doi: 10.16035/j.issn.1001-7283.2023.06.034

Previous Articles     Next Articles

Identification of Tomato Virus Diseases in Yinchuan, Xuzhou and Chifeng

Wen Zhihao1(), Zhang Shengfeng2, Xie Xuewen1, Chai Ali1, Li Jianshe3, Li Lei1, Fan Tengfei1, Shi Yanxia1(), Li Baoju1()   

  1. 1State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Xuzhou Jiawang Tairui Agricultural Science and Technology Co., Ltd., Xuzhou 221133, Jiangsu, China
    3Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2022-05-12 Revised:2023-09-15 Online:2023-12-15 Published:2023-12-15

Abstract:

Tomato plants were identified for the symptoms of suspected tomato virus disease in Yinchuan, Xuzhou and Chifeng in 2021, such as yellow and green mottling, leaf shrinkage and curling, plant dwarfing. The specific primers of 12 tomato virus diseases were used for RT-PCR detection. The results showed that, the virus infecting tomatoes most was cucumber mosaic virus (CMV), with a detection rate of 60.00%, followed by tomato spotted wilt virus (TSWV), with a detection rate of 46.67%. Nucleotide sequence analysis showed 97% and 99% similarity with that of CMV (AJ131619.1) and TSWV (MK318839.1). Phylogenetic trees were constructed with partial gene sequences of CMV and TSWV, respectively. The results showed that tomato plants were co-infected by CMV and TSWV in Yinchuan region.

Key words: Tomato, Cucumber mosaic virus, Tomato spotted wilt virus, RT-PCR

Table 1

The information of samples"

样品编号
Sample number
采集日期
Sampling date
采集地点
Sampling site
FQ2021032101~FQ20210321017 2021-03-21 宁夏银川
FQ2021032501~FQ2021032506 2021-03-25 江苏徐州
FQ2021032801~FQ2021032807 2021-03-28 内蒙古赤峰

Fig.1

Symptoms of suspected virus-infected tomato"

Table 2

Primer information used in this study"

病毒Virus 引物Primer 引物序列Primer sequence PCR产物 PCR product (bp) 参考文献Reference
CMV CMV-F 5′- CTTTGTAGGGAGTGAACGCTG -3′ 248 [8]
CMV-R 5′- AGATGGCGGCAACGGATA -3′
ToMV ToMV-1 5′-ATGTCTTACTCAATCACTTC-3′ 480 [9]
ToMV-2 5′-TTAAGATGCAGGTGCAGAGG-3′
PVX PVX-1 5′-AGTGGTATGGAACTGGATG-3′ 308 [10]
PVX-2 5′-TTATGGTGGTGGTAGAGTGA-3′
PVY PVY-F 5′-GCTCTAGAAGTTTGGGTTATGATGGATGGGGATG-3′ 420 [11]
PVY-R 5′ -CGGAATTCAATCACCCTGCCACCTCTATC-3′
BBWV R2F-F 5′- TTGAACCCGGAAAAAGGGAGTGTG-3′ 1300 [12]
R2F-R 5′- TTGCTAGGYCCAGGYAAATTGTA-3′
TYLCV TYLCV-1 5′-TAATCATTTCCACGCCCGTCTCG-3′ 648 [13]
TYLCV-2 5′-GGTTCTCATACTTGGCTGCCTCCT-3′
TMV TMV-1 5′-CTGTTTAGCCGGTTTGGT-3′ 470 [14]
TMV-2 5′-TCCCTTTACGGACATCAC-3′
ToCV ToCV-F 5′-GGTTTGGATTTTGGTACTACATTCAGT-3′ 450 [14]
ToCV-R 5′-AAACTGCCTGCATGAAAAGTCTC-3′
TSWV TSWV-1 5′-AACCCCGAACATTTCATAGA-3′ 425 [15]
TSWV-2 5′-TCAGACAGGATTGGAGCCAC-3′
TICV TICV-CF 5′-AATCGGTAGTGACACGAGTAGCATC-3′ 416 [16]
TICV-CR 5′-CTTCAAACATCCTCCATCTGCC-3′
ToMMV CP-F 5′-ATGTCTTACGCTATTACTTCTCCG -3′ 480 [17]
CP-R 5′- TTAGGACGCTGGCGCAGAAG-3′
ToBRFV ToBRFV dF 5′-GCAATGATCAATCCTGTATCTAAGCCATT-3′ 255 [18]
ToBRFV dR 5′-CATCACTACGGTGTAATACTTCAATGTTT -3′

Fig.2

PCR amplification of suspected virus-infected tomato samples using different primers in Yinchuan M: BM5000; N: Negative control (ddH2O); 1: CMV; 2: TSWV; 3: PVX; 4: PVY; 5: ToMV; 6: BBWV; 7: TYLCV; 8: TMV; 9: ToCV; 10: Tomato infectious chlorosis virus (TICV); 11: ToMMV; 12: Tomato brown rugose fruit virus (ToBRFV)"

Table 3

Species and distribution of tomato virus disease in Yinchuan, Xuzhou and Chifeng"

采样地
Sampling site
样品数
Sample number
检出病毒种类及数量The type and number of viruses detected 病毒检出率
Detection rate
of virus (%)
CMV ToMV TSWV PVY、PVX、BBWV、TYLCV、TMV、
ToCV、TICV、ToMMV、ToBRFV
银川Yinchuan 17 15 0 13 0 88.2
徐州Xuzhou 6 2 0 1 0 33.3
赤峰Chifeng 7 1 2 0 0 28.6
病毒检出率Detection rate (%) 60.00 6.67 46.67 0

Fig.3

Phylogeny trees based on partial nucleotide sequences of TSWV and CMV"

[1] 周杰, 夏晓剑, 胡璋健, 等. “十三五”我国设施蔬菜生产和科技进展及其展望. 中国蔬菜, 2021(10):20-34.
[2] 王秀芝, 史晓斌, 崔聪聪, 等. 嗜硫小红卵菌与噻虫嗪组合对番茄病毒病的预防和防控效果. 中国蔬菜, 2022(2):82-87.
[3] 程林发, 董文浩, 张凤桐, 等. 马铃薯Y病毒HC-Pro第182位赖氨酸残基参与引起烟草叶脉坏死. 植物病理学报, 2021, 51(1):41-48.
[4] 廖锦钰, 黄莉萍, 张战泓, 等. 番茄褪绿病毒与番茄黄化曲叶病毒复合侵染对番茄褪绿病毒传播的影响. 植物保护, 2021, 47(3):89-95.
[5] 杨菲, 张爱红, 王秀芝, 等. 内蒙古赤峰地区番茄斑萎病毒的鉴定. 园艺学报, 2021, 48(6):1208-1216.
doi: 10.16420/j.issn.0513-353x.2020-0750
[6] 吴贺, 荆诗韵, 刘丹, 等. 苏南五地(市)主要蔬菜作物的病毒种类、区域分布和发生趋势. 植物病理学报, 2021, 51(3):325-333.
[7] 李月月, 周文鹏, 路思倩, 等. 番茄斑驳花叶病毒在我国茄科作物上的发生及生物学特性. 中国农业科学, 2020, 53(3):539-550.
doi: 10.3864/j.issn.0578-1752.2020.03.007
[8] 王红梅, 王立光, 刘新星, 等. 兰州百合病毒RT-PCR检测技术建立及应用. 甘肃农业科技, 2021, 52(3):38-43.
[9] 王少立, 谭玮萍, 杨园园, 等. 山东省辣椒主要病毒种类的分子检测与鉴定. 中国农业科学, 2017, 50(14):2728-2738.
doi: 10.3864/j.issn.0578-1752.2017.14.009
[10] 孙琦, 张春庆. 马铃薯X病毒的RT-PCR检测. 园艺学报, 2003, 30(6):687-689.
[11] 张建云, 许文博, 刘升学, 等. 侵染加工番茄的BBWV2的分子鉴定及田间检测. 石河子大学学报(自然科学版), 2013, 31(6):675-679.
[12] 陈利达, 石延霞, 谢学文, 等. 我国不同地区番茄主要病毒病种类的分子检测与分析. 华北农学报, 2020, 35(1):185-193.
doi: 10.7668/hbnxb.20190230
[13] Niu Y B, Qing L, Yao M, et al. First report of Tobacco mosaic virus in Abutilon theophrasti in China. Plant Disease, 2009, 93(11):1221-1221.
[14] Ge B B, Liu G L, Wang H Q. First report of Tomato mosaic virus Infecting pepino in China. Plant Disease, 2012, 96(11):1704-1704.
[15] 柴阿丽, 陈利达, 许帅, 等. 新疆喀什辣椒轻斑驳病毒和黄瓜花叶病毒复合侵染的分子鉴定. 华北农学报, 2020, 35(增1):332-337.
[16] Fajarfika R, Hartono S, Sulandari S, et al. Molecular detection caused yellowing disease (Tomato chlorosis virus and Tomato infectious chlorosis virus) on tomatoes. Journal Perlindungan Tanaman Indonesia, 2015, 19(2):80-88.
[17] 涂丽琴, 吴淑华, 高丹娜, 等. 辽宁省番茄上番茄斑驳花叶病毒的分子鉴定. 江苏农业学报, 2020, 36(5):1126-1132.
[18] 田沂民, 俞禄珍, 易建平, 等. 进境番茄种子中番茄褐色皱纹果病毒的检测鉴定. 植物检疫, 2021, 35(4):35-38.
[19] 王晓敏, 李洪磊, 王林, 等. 银川番茄斑萎病毒的分子鉴定. 植物学报, 2021, 56(6):715-721.
doi: 10.11983/CBB21113
[20] 邓杰, 王炜哲, 杨璐嘉, 等. 宁夏设施番茄病毒病病原鉴定. 植物病理学报, 2020, 50(4):494-498.
[21] 鲁瑞芳, 李为民, 彭学贤. 植物病毒协生作用及其分子机理. 中国病毒学, 2001(3):2-8.
[22] Rochow W F, Ross A F. Virus multiplication in plants doubly infected by potato viruses X and Y. Virology, 1955, 1(1):10-27.
pmid: 13267974
[1] Liu Shuhan, Chen Lei, Zhang Jianchao, Hu Gan, Sun Junyan, Liu Dongtao, Wang Junwei. Gene Differential Expression Analysis of TMS5 in the Fertility Conversion of Wheat BNS Sterile Line [J]. Crops, 2023, 39(5): 24-29.
[2] Zhao Pengpeng, Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong. Bioinformatics and Expression Analysis of GzCIPK7-5B Gene in Wheat [J]. Crops, 2023, 39(4): 77-84.
[3] Guo Yan, Liu Zhida, Kang Liru, Bao Tingting, Yang Xu, Zhao Jun, Zhang Zhiwei. Optimization of Efficient Silencing System of Tomato VIGS Based on PDS Gene [J]. Crops, 2023, 39(2): 46-50.
[4] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[5] Yanli Lu,Hongyou Zhou,Xiaoyu Zhang. Optimization of Virus-Free of Shoot Tip and Virus Detection of Test-Tube Plantlet of Potato [J]. Crops, 2017, 33(1): 161-167.
[6] Yu Li,Wenyin Zheng,Chun Feng,Rongfu Wang,Juan Li. Analysis of FeSOD Gene Expression in Normal Wheat Yannong 19 Seedlings under Abiotic Stress [J]. Crops, 2016, 32(4): 75-79.
[7] . [J]. Crops, 2013, 29(3): 86-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!