Crops ›› 2020, Vol. 36 ›› Issue (3): 109-116.doi: 10.16035/j.issn.1001-7283.2020.03.017

Previous Articles     Next Articles

Effects of Vertical Deep Rotary Tillage on Soil Greenhouse Gas Emissions from Potato Farmland

Miao Pinggui1, Yu Xianfeng2, Zhang Xucheng1,2(), Fang Yanjie2, Hou Huizhi2, Wang Hongli2, Ma Yifan2, Dou Xuecheng1()   

  1. 1School of Agriculture, Gansu Agricultural University/Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China
    2Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2019-10-21 Revised:2019-11-02 Online:2020-06-15 Published:2020-06-10
  • Contact: Xucheng Zhang,Xuecheng Dou E-mail:gszhangxuch@163.com;tigerzyx@163.com

Abstract:

In order to study the effects of vertical deep rotary tillage (VRT) technology on greenhouse gas (CO2 and N2O) emissions in the whole growth period of potato farmland was analyzed. Static box-gas chromatography was used in the experiment to design four treatments: vertical deep rotary mulch planting potato (VRT-P), rotary tillage mulch planting potato (TT-P), vertical deep rotary mulch without crop (VRT-FL) and rotary tillage without crop (TT-FL). Soil water content, temperature and greenhouse gas emission flux were measured to study the effect of vertical deep rotary tillage on greenhouse gas emissions and its mechanism. The results showed that VRT treatment could significantly increase the soil water content of the 0-30cm soil layer. At buding stage, early flowering stage, full flowering stage and starch accumulation stage, VRT-P increased by 9.8%, 8.4%, 14.6% and 18.9% respectively compared with TT-P, while VRT-FL increased by 12.3%, 9.1%, 10.7% and 26.8% respectively compared with TT-FL. Soil temperature in 0-25cm soil layer increased significantly at budding stage. The emission fluxes of greenhouse gases (N2O and CO2) from farmland soil showed a seasonal distribution pattern of high in summer and autumn and low in winter and spring. During the potato growth period, the N2O and CO2 emission fluxes of VRT-P increased by 39.9% and 26.1% respectively compared with TT-P, and increased by 11.2% and 35.9% respectively in leisure season. Compared with TT-P, the N2O and CO2 emission fluxes of VRT-RL increased by 62.8% and 4.4% respectively, and increased by 41.5% and 4.8% in leisure season respectively. Planting crop had a significant effect on greenhouse gas emissions. The N2O and CO2 emission fluxes of VRT-P increased by 78.2% and 41.9% respectively compared with VRT-FL, and TT-P significantly increased by 107.3% and 24.1% respectively compared with TT-FL. Therefore, vertical deep rotation tillage significantly increases the emission flux of soil greenhouse gases (N2O and CO2) due to the increase of soil temperature, humidity and the change of soil physical structure.

Key words: Vertical deep rotary tillage, Potato, Greenhouse gases, Discharge flux

Fig.1

Precipitation and average air temperature in test area in 2017"

Fig.2

Potato micro-furrows on ridges and planting with plastic mulching"

Fig.3

Dynamic changes of soil water (0-30cm) under different treatments Different letters indicate significant difference among treatments at 0.05 level, the same below"

Fig.4

Dynamic changes of soil temperature (0-25cm) under different treatments"

Fig.5

Seasonal dynamic changes of N2O emission flux from soils under different treatments"

Fig.6

Seasonal dynamic changes of CO2 emission flux from soils under different treatments"

Table 1

Regression equations of soil temperature (0-25cm) and greenhouse gas emission fluxes under different tillage measures"

气体排放通量
Gas emission flux
处理
Treatment
回归方程
Regression equation
决定系数
Coefficient of determination (R2)
相关系数
Correlation coefficient (r)
N2O排放通量 TT-P y=0.7157x-8.7865 0.4711 0.686*
N2O emission flux VRT-P y=1.3013x-19.7370 0.4317 0.657*
VRT-FL y=0.8064x-12.6620 0.5836 0.764**
TT-FL y=0.5486x-8.6616 0.4727 0.687*
CO2排放通量 TT-P y=50.5450x-531.4200 0.4427 0.649*
CO2 emission flux VRT-P y=70.9560x-866.2500 0.4871 0.715*
VRT-FL y=31.9210x-210.8100 0.6073 0.821**
TT-FL y=34.1400x-264.6100 0.4554 0.674*

Table 2

Regression equations of soil moisture (0-30cm) and greenhouse gas emission fluxes under different tillage measures"

气体排放通量
Gas emission flux
处理
Treatment
回归方程
Regression equation
决定系数
Coefficient of determination (R2)
相关系数
Correlation coefficient (r)
N2O排放通量 TT-P y=1.0920x-14.2490 0.4129 0.642*
N2O emission flux VRT-P y=1.6279x-23.5470 0.4493 0.671*
VRT-FL y=1.1503x-19.5530 0.7138 0.844**
TT-FL y=0.7816x-13.1510 0.8563 0.925**
CO2排放通量 TT-P y=92.5140x-1223.8000 0.5584 0.723*
CO2 emission flux VRT-P y=111.5600x-1550.6000 0.8008 0.913**
VRT-FL y=49.7470x-576.7400 0.8866 0.993**
TT-FL y=33.9710x-229.3800 0.4025 0.634*
[1] 任凤玲 . 施用有机肥我国典型农田土壤温室气体排放特征. 北京:中国农业科学院, 2018.
[2] 田云, 张俊飚, 李波 . 中国农业碳排放研究:测算、时空比较及脱钩效应. 资源科学, 2012,34(11):2097-2105.
[3] Samoura M L . 耕作方式与秸秆还田对双季稻产量和温室气体排放的影响. 北京:中国农业科学院, 2018.
[4] 姚鹏伟 . 旱作农田土壤温室气体剖面分布及净排放对作物、氮肥和覆膜的响应. 北京:中国科学院大学, 2017.
[5] 田慎重 . 耕作方式及其转变对麦玉两熟农田土壤CH4、N2O排放和固碳能力的影响. 泰安:山东农业大学, 2010.
[6] Fierer N . A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 2003,67(3):798-805.
doi: 10.2136/sssaj2003.0798
[7] 李赟, 贾宏涛, 方光新 , 等. 围栏封育对新疆亚高山草甸土壤夏季CO2日排放的影响. 干旱区地理, 2008,31(6):892-896.
[8] 刘硕, 游松财, 李玉娥 , 等. 基于模拟试验的CO2浓度和气温升高对水稻产量的影响. 湖南农业科学, 2013(1):94-96.
[9] Giuseppe B, Emilio B, Gaetano A . Long-term effects of contrasting tillage on soil organic carbon,nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences. Science of the Total Environment, 2018,619:18-27.
[10] Lamptey S, Li L L, Xie J H . Soil respiration and net ecosystem production under different tillage practices in semi-arid Northwest China. Plant Soil and Environment, 2017,63:14-21.
doi: 10.17221/PSE
[11] 杨兰芳, 蔡祖聪 . 不同生长期盆栽大豆的土壤呼吸昼夜变化及其影响因子. 生态学报, 2004,24(12):2955-2960.
[12] 陈书涛 . 管理措施对农田生态系统土壤呼吸、N2O和CH4排放的影响. 南京:南京农业大学, 2007.
[13] 杨晓琳 . 华北平原不同轮作模式节水减排效果评价. 北京:中国农业大学, 2015.
[14] 田琴 . 黄土丘陵区典型植被类型土壤微生物及异养呼吸特征. 北京:中国科学院大学, 2017.
[15] 韦本辉 . 旱地作物粉垄栽培技术研究简报. 中国农业科学, 2010,43(20):4330.
[16] 侯慧芝, 张绪成, 王娟 , 等. 半干旱区旱地马铃薯立式深旋耕作栽培技术. 中国蔬菜, 2019(3):95-97.
[17] 韦本辉, 甘秀芹, 申章佑 , 等. 粉垄栽培甘蔗试验增产效果. 中国农业科学, 2011,44(21):4544-4550.
doi: 10.3864/j.issn.0578-1752.2011.21.024
[18] 李华, 逄焕成, 任天志 , 等. 深旋松耕作法对东北棕壤物理性状及春玉米生长的影响. 中国农业科学, 2013,46(3):647-656.
doi: 10.3864/j.issn.0578-1752.2013.03.022
[19] 张绪成, 马一凡, 于显枫 , 等. 西北半干旱区深旋松耕作对马铃薯水分利用和产量的影响. 应用生态学报, 2018,29(10):3293-3301.
[20] 张绪成, 马一凡, 于显枫 , 等. 立式深旋松耕对西北半干旱区土壤水分性状及马铃薯产量的影响. 草业学报, 2018,27(12):156-165.
[21] 成臣, 曾勇军, 杨秀霞 , 等. 不同耕作方式对稻田净增温潜势和温室气体强度的影响. 环境科学学报, 2015,35(6):1887-1895.
[22] 吕锦慧, 武均, 张军 , 等. 不同耕作措施下旱作农田土壤CH4、CO2排放特征及其影响因素. 干旱区资源与环境, 2018,32(12):26-33.
[23] 李叶杉, 张仁陟, 张军 , 等. 不同施氮水平下陇中黄土高原旱作小麦农田土壤温室气体的排放特征. 甘肃农业大学学报, 2018,53(6):34-41.
[24] 赵力莹, 董文旭, 胡春胜 . 耕作方式转变对冬小麦季农田温室气体排放和产量的影响. 中国生态农业学报, 2018,26(11):1613-1623.
[25] 江峰 . 秸秆还田与灌溉模式对超级粳稻产量形成、及温室气体排放的影响. 扬州:扬州大学, 2014.
[26] 李平, 郎漫 . 硝化和反硝化过程对林地和草地土壤N2O排放的贡献. 中国农业科学, 2013,46(22):4726-4732.
doi: 10.3864/j.issn.0578-1752.2013.22.010
[27] 吕晓东, 王婷 . 旱地农田氧化亚氮排放研究进展. 甘肃农业科技, 2018(10):67-73.
[28] 常宗强, 冯起, 司建华 , 等. 土壤水热条件对祁连山荒漠草原土壤CO2通量的影响. 干旱区地理, 2007,30(6):812-819.
[29] 刘全全 . 降水变化对黄土高原旱作冬小麦农田土壤温室气体排放的影响. 西安:西北大学, 2015.
[30] 尹高飞 . 有机肥替代对不同作物轮作模式下农田温室气体排放的影响. 北京:中国农业科学院, 2019.
[31] 林存刚 . 硝化与反硝化作用对农田土壤N2O排放的贡献. 重庆:西南大学, 2006.
[32] 姚凡云, 王立春, 多馨曲 , 等. 不同氮肥对东北春玉米农田温室气体周年排放的影响. 应用生态学报, 2019,30(4):1303-1311.
[33] 徐聪 . 华北平原长期氮肥施用和秸秆还田下温室气体排放及氮素损失特征. 北京:中国农业大学, 2018.
[1] He Wanchun, Huang Kai, Ling Peng, Chen Zixiong, Wang Jingcai, Pan Xiaochun, Zhang Juanning, Li Pengcheng. Effects of Different Ratio of Organic Fertilizer Nitrogen to Fertilizer Nitrogen on the Absorption Capacity and Morphology of Potato Roots [J]. Crops, 2020, 36(3): 132-136.
[2] Chen Juan, He Jinhong, Liu Jili, Kang Jianhong, Wu Na. Effect of Different Planting Patterns on Starch Formation and Yield of Potato in Semi-Arid Area [J]. Crops, 2020, 36(3): 169-176.
[3] Hao Kai, Jia Liguo, Qin Yonglin, Fan Mingshou. Research Progress about Nitrogen Effects on Potato Source-Sink Relationship [J]. Crops, 2020, 36(3): 22-26.
[4] Qiu Cailing, Fan Guoquan, Shen Yu, Gao Yanling, Zhang Wei, Han Shuxin, Zhang Shu, Dong Xuezhi, Ma Ji, Bai Yanju. Establishment of RT-qPCR Detection System for Potato Spindle Tuber Viroid [J]. Crops, 2020, 36(3): 79-84.
[5] Wang Tianwen,Li Changzhong,Chen Guanghai. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[6] Guo Qilin,Wu Haiyun,Li Huan,Liu Qing. Ecological Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus in Leaves and Stems of Different Types of Sweet Potato [J]. Crops, 2020, 36(2): 41-47.
[7] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles [J]. Crops, 2019, 35(6): 1-7.
[8] Chen Yang,Qin Yonglin,Yu Jing,Jia Liguo,Fan Mingshou. Basis and Measures for Reducing Nitrogen Fertilizer on Irrigated Potato in Inner Mongolia [J]. Crops, 2019, 35(6): 90-93.
[9] Guo Jinting,Teng Yue,Gao Yuliang,Zhang Yan,Li Kuihua. Effects of Different Light Quality on Characteristics of Sessile-Tuberization and Photosynthetic Performance with Single Node Stems in Potato [J]. Crops, 2019, 35(6): 120-126.
[10] Zhang Congying,Jiang Jizhi,Liang Jiao,Qiao Liu,Huang Jie. Identification of Bacterium HT-6 and Its Antagonistic Stability against Phytophthora infestans [J]. Crops, 2019, 35(6): 162-167.
[11] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato [J]. Crops, 2019, 35(5): 114-119.
[12] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland [J]. Crops, 2019, 35(5): 120-124.
[13] Liang Junmei,Zhang Jun,An Hao,Jing Yupeng,Li Huanchun,Duan Yu. Effects of Recommended Fertilization by Management Nutrition Expert System on Potato Yield and Fertilizer Use Efficiency [J]. Crops, 2019, 35(4): 133-138.
[14] Qi Deqiang,Zhao Jingjing,Feng Naijie,Zheng Dianfeng,Liang Xiaoyan. Effects of S3307 and DTA-6 on Sugar Metabolism and Yield of Potato Leaves and Tubers [J]. Crops, 2019, 35(4): 148-153.
[15] Zhang Haibin,Meng Meilian,Liu Kunyu,Zhang Lingxiang,Chen Youjun. Effects of Different Rotation Patterns on Dry Matter Accumulation, Disease Occurrence and Yield of Potato [J]. Crops, 2019, 35(4): 170-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!