Crops ›› 2021, Vol. 37 ›› Issue (6): 230-235.doi: 10.16035/j.issn.1001-7283.2021.06.037

;

Previous Articles    

Innovative Rice Cropping for Higher Yield and Less CH4 Emission under Crop Straw Incorporation

Zhang Jun1,2(), Deng Aixing1, Shang Ziyin1, Tang Zhiwei1, Yan Shengji1, Zhang Weijian1,2()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Center for Carbon Neutrality in Agriculture and Rural Region, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-11-15 Revised:2021-11-18 Online:2021-12-15 Published:2021-12-16
  • Contact: Zhang Weijian E-mail:zhangjun@caas.cn;Zhangweijian@caas.cn

Abstract:

Based on the National Key Research and Development Program of The 13th Five-Year Plan, the authors presented an innovative and practical rice cropping model of crop straw aerobic incorporation for higher yield and less CH4 emission. The comprehensive benefits and the key technical points of this cropping model application in a large scale were summarized and analyzed. The key techniques included crop straw chopping and uniform throwing, dry or wet soil tillage, dense planting with nitrogen regulation and water control. These practices could improve the permeability of soil layer and the oxygen transport capacity, anti-lodging and anti-aging capacity of rice plant. Consequently, the new cropping model could increase the oxygen contents of paddy soil layer and rice rhizosphere, and achieve the synergy of high yield and CH4 emission reduction under crop straw incorporation. In the large-scale demonstration in China's main rice cropping regions, compared to the traditional cropping model, the innovative model could get increases in N use efficiency by 30.2%-36.0%, in net income by 8.3%-9.7% and decrease in CH4 emission by 31.7%-75.7% while maintaining high rice yield. Finally, this paper puts forward some suggestions of government incentive and supporting technology for this new model demonstration.

Key words: Rice production, Straw incorporation, Farming system, Methane emission reduction, Food security, Carbon neutrality

Table 1

Key technical points of conventional model and optimized model in three main rice planting regions"

稻区
Region
模式
Model
耕作方式
Tillage
氮肥施用方式
Nitrogen application
栽插密度
Planting density
水分
管理
ITS
单季稻
Single rice
常规模式

秸秆粉碎还田(粉碎长度约10cm,下同);春翻耕(深度18~20cm);春季浅泡水,常规有动力打浆整地 纯氮180kg/hm2,基肥:蘖肥:穗
肥=40%:30%:30%
行距30cm;
株距13.3cm
浅水1~3cm
稻作新模式


秸秆粉碎匀抛还田(≤10cm);秋季1年翻1年旋,翻耕18~20cm,反旋>15cm;翻耕田灌水到淹没最高垡片的2/3处(见水见土),旋耕稻田高出土面2~3cm;免搅浆整地 基肥氮减总氮量的20%,纯氮
144kg/hm2,将占总氮20%的穗肥
调至蘖肥。基肥:蘖肥:穗肥=
25%:62.5%:12.5%
行距30cm;
株距10cm

湿润
灌溉

稻麦两熟
Rice-wheat
常规模式
秸秆粉碎还田(10cm);先上水泡田后薄水旋耕,旋耕深度12~15cm;常规有动力打浆机整地 纯氮270kg/hm2,基肥:蘖肥:穗
肥=30%:40%:30%
行距30cm;
株距14cm
浅水1~3cm
稻作新模式


秸秆粉碎匀抛还田(≤10cm);水稻季旱翻耕+反旋碎垡埋茬、小麦季旋耕,翻耕深度25~
30cm,旋耕12~15cm;浅水1~2cm泡田;免搅浆整地
穗肥氮减总氮量的20%,纯氮
216kg/hm2,基蘖肥不变。基肥:蘖肥:穗肥=37.5%:50%:12.5%
行距30cm;
株距12cm

湿润
灌溉

双季稻
Double rice
常规模式

秸秆粉碎还田(约10cm);每季水稻移栽前1周内旋耕稻田2遍(深度约15cm),之后人工插秧
纯氮165kg/hm2(早稻),195kg/hm2(晚稻),基肥:蘖肥:穗肥=
50%:20%:30%
行距25cm;
早稻株距13cm,
晚稻株距16cm
浅水1~3cm
稻作新模式


秸秆粉碎匀抛还田(≤10cm);冬季1年翻耕、2年免耕,冬季翻耕20~25cm,春季旱(湿)反旋(>15cm)埋茬,夏季旱(湿)反旋(>15cm)埋茬;浅水1~2cm泡田;免搅浆整地 穗肥氮减总氮量的20%,纯氮
132kg/hm2(早稻),156kg/hm2
(晚稻);基蘖肥不变。基肥:蘖
肥:穗肥=62.5%:25%:12.5%
行距25cm;
早稻株距11cm,
晚稻株距13cm
湿润
灌溉

Table 2

Comparison of rice yield, partial factor productivity of nitrogen and net income during rice growth duration of different models in main rice planting regions"

稻区
Region
模式
Model
产量
Yield (kg/hm2)
氮肥偏生产力
Partial factor productivity of nitrogen (%)
净收益(元/hm2
Net income (yuan/hm2)
单季稻Single rice 常规模式 8 582.8a 47.7b 10 786
稻作新模式 8 938.3a 62.1a 11 730
稻麦两熟Rice-wheat 常规模式 10 330.2a 38.3b 16 942
稻作新模式 11 239.7a 52.0a 18 577
双季稻Double rice 常规模式 16 418.7b 45.6b 12 871
稻作新模式 17 489.1a 60.8a 13 936

Table 3

Differences of greenhouse gas emission of different models in main rice planting regions"

稻区
Region
模式
Model
CH4排放
CH4 emission
(kg/hm2)
N2O排放
N2O emission
(kg/hm2)
单位面积温室气体排放
Area-scaled greenhouse gas emission
(kg CO2-eq/hm2)
单位产量温室气体排放量
Yield-scaled greenhouse gas emission
(kg CO2-eq/kg)
单季稻 常规模式 264.4a 0.74a 6 829.1a 0.82a
Single rice 稻作新模式 180.5b 0.55a 4 676.7b 0.54b
稻麦两熟 常规模式 329.5a 1.79a 9 701.0a 0.94a
Rice-wheat 稻作新模式 80.1b 1.89a 2 743.0b 0.25b
双季稻 常规模式 538.6a 0.46a 13 466.0a 0.82a
Double rice 稻作新模式 362.1b 0.37a 9 053.0b 0.52b

Fig.1

Diagram of tillage pattern for straw aerobic incorporation"

Fig.2

Controlled irrigation in rice tillering stage (a) and early grain-filling stage (b)"

[1] IPCC. Climate change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte,V,Zhai P,Pirani A,et al. (eds.)]. Cambridge University Press, 2021.
[2] FAO. Crops and livestock products. (2021-09-15)[2021-11-15]. https://www.fao.org/faostat/en/#data/QCL.
[3] 中华人民共和国生态环境部. 中美应对气候危机联合声明. (2021-4-18)[2021-11-15]. https://www.mee.gov.cn/ywdt/hjywnews/202104/t20210418_829133.shtml.
[4] Global Methane Pledge. Fast action on methane to keep a 1.5°C future within reach. (2021-11-02)[2021-11-15]. https://www.org/.globalmethanepledge.
[5] 中华人民共和国生态环境部. 中美关于在21世纪20年代强化气候行动的格拉斯哥联合宣言. (2021-11-11)[2021-11-15]. https://www.mee.gov.cn/ywdt/hjywnews/202111/t20211111_959900.shtml.
[6] 张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54(18):3892-3902.
[7] 张卫建, 张俊, 张会民, 等. 稻田土壤培肥与丰产增效耕作理论和技术. 北京: 科学出版社, 2021.
[8] 王玄德, 石孝均, 宋光煜. 长期稻草还田对紫色水稻土肥力和生产力的影响. 植物营养与肥料学报, 2005(3):302-307.
[9] Jiang Y, Qian H, Huang S, et al. Acclimation of methane emissions from rice paddy fields to straw addition. Science Advances, 2019, 5(1):eaau9038.
doi: 10.1126/sciadv.aau9038
[10] Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils:a meta-analysis. Global Change Biology, 2014, 20:1366-1381.
doi: 10.1111/gcb.12517 pmid: 24395454
[11] Jiang Y, van Groenigen K J, Huang S, et al. Higher yields and lower methane emissions with new rice cultivars. Global Change Biology, 2017, 23(11):4728-4738.
doi: 10.1111/gcb.13737 pmid: 28464384
[12] Zhang J, Hang X, Lamine S M, et al. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system. Agriculture,Ecosystems and Environment, 2017, 250:37-43.
doi: 10.1016/j.agee.2017.07.034
[13] Hang X, Zhang X, Song C, et al. Differences in rice yield and CH4 and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai Area,China. Soil and Tillage Research, 2014, 144:205-210.
doi: 10.1016/j.still.2014.07.013
[14] Jiang Y, Qian H Y, Wang L, et al. Limited potential of harvest index improvement to reduce methane from paddy field. Global Change Biology, 2019, 25(2):686-698.
doi: 10.1111/gcb.14529 pmid: 30449058
[15] 张俊, 张卫建, 李成玉, 等. 稻田秸秆还田技术手册. 北京: 中国农业出版社, 2020.
[16] Zhang J, Li G H, Huang Q Y, et al. Effects of culm carbohydrate partitioning on basal stem strength in a high-yielding rice population. Crop Journal, 2017, 5(6):478-487.
doi: 10.1016/j.cj.2017.08.008
[17] 吴孔明. 中国农作物病虫害防控科技的发展方向. 农学学报, 2018, 8(1):35-38.
[18] 中华人民共和国农业农村部科技教育司. 2021年秋收农作物秸秆还田指导意见. (2021-09-27)[2021-11-15]. http://www.kjs.moa.gov.cn/gzdt/202109/t20210927_6378354.htm.
[1] Zhang Jun, Deng Dasun, Liu Jianjun, Zhou Wenxi, Huang Qianru, Zhang Weijian. Mechanization Cultivation Model of Ratoon Rice with Straw Incorporation in Double Rice Cropping Region in South of Yangtze River Valley [J]. Crops, 2021, 37(4): 212-216.
[2] Zhang Gang, Zhang Shijie, Wang Dejian, Yu Yuanchun. Analysis of Yield and Economic Benefit of Straw Incorporation under Rice-Wheat Double Cropping System [J]. Crops, 2020, 36(6): 97-103.
[3] Yong Cui,Ziqing Ma,Enping Tian. Analysis on the Development of Agricultural Production in Central and Southern Mountainous Areas of Ningxia in Recent 20 Years [J]. Crops, 2019, 35(2): 28-38.
[4] Sui Yanghui,Gao Jiping,Liu Caihong,Xu Zhengjin,Wang Yanbo,Zhao Haiyan. Effects of Straw Incorporation Modes on Rice Photosynthesis, Dry Matter Accumulation and Nitrogen Uptake in Cool Region of Northeast China [J]. Crops, 2018, 34(5): 137-143.
[5] . [J]. Crops, 2013, 29(3): 79-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!