Crops ›› 2023, Vol. 39 ›› Issue (6): 127-134.doi: 10.16035/j.issn.1001-7283.2023.06.018
Previous Articles Next Articles
Ao Jincheng1(), Wang Zheng2, Yang Qigang2, Li Zhi2, Wei Jianyu2()
[1] |
Schloter M, Dilly O, Munch J. Indicators for evaluating soil quality. Agriculture,Ecosystem & Environment, 2003, 98(1/2/3):255-262.
doi: 10.1016/S0167-8809(03)00085-9 |
[2] | 张科, 袁玲, 施娴, 等. 不同植烟模式对烤烟产质量、土壤养分和酶活性的影响. 植物营养与肥料学报, 2010, 16(1):124-128. |
[3] | 邓阳春, 黄建国. 长期连作对烤烟产量和土壤养分的影响. 植物营养与肥料学报, 2010, 16(4):840-845. |
[4] |
Kong A Y Y, Scow K M, Córdova-Kreylos A L, et al. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biology and Biochemistry, 2011, 43(1):20-30.
doi: 10.1016/j.soilbio.2010.09.005 |
[5] |
Castrillo G, Teixeira P J P L, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543(7646):513-518.
doi: 10.1038/nature21417 |
[6] |
Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64(1):807-838.
doi: 10.1146/arplant.2013.64.issue-1 |
[7] |
Li M S, Guo R, Yu F, et al. Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences, 2018, 19(2):443.
doi: 10.3390/ijms19020443 |
[8] |
Kwak M J, Kong H G, Choi K, et al. Author correction: Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36(11):1117.
doi: 10.1038/nbt1118-1117 |
[9] | 尚志强. 烟草黑胫病病原、发生规律及综合防治研究进展. 中国农业科技导报, 2007, 9(2):73-76. |
[10] | 刘贤文, 郭华春. 马铃薯与玉米复合种植对土壤化感物质及土壤细菌群落结构的影响. 中国生态农业学报(中英文), 2020, 28(6):794-802. |
[11] | 解开治, 徐培智, 李康活, 等. 三种不同种植模式对土壤细菌群落多样性的影响. 植物营养与肥料学报, 2009, 15(6):1107-1113. |
[12] | 向立刚, 汪汉成, 郭华, 等. 健康与感染黑胫病烟株根际土壤与茎秆细菌群落结构与多样性. 中国烟草学报, 2020, 26(1):100-108. |
[13] | 何川, 刘国顺, 蒋士君. 连作对植烟土壤微生物群落多样性的影响. 江西农业大学学报, 2012, 34(4):658-663. |
[14] | 段玉琪, 晋艳, 陈泽斌, 等. 烤烟轮作与连作土壤细菌群落多样性比较. 中国烟草学报, 2012, 18(6):53-59. |
[15] | 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. |
[16] | 敖金成, 李博, 阎凯, 等. 连作对云南典型烟区植烟土壤细菌群落多样性的影响. 农业资源与环境学报, 2022, 39(1):46-54. |
[17] |
贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 2013, 21(4):411-420.
doi: 10.3724/SP.J.1003.2013.10033 |
[18] | Maron P A, Sarr A, Kaisermann A, et al. High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology, 2018, 84(9):e02738-17. |
[19] |
Morris A, Meyer K, Bohannan B. Linking microbial communities to ecosystem functions: What we can learn from genotype- phenotype mapping in organisms. Philosophical Transactions B, 2020, 375:20190244.
doi: 10.1098/rstb.2019.0244 |
[20] |
Naeenm S, Hahn D R, Schuurman G. Producer-decomposer co- dependency influences biodiversity effects. Nature, 2000, 403:762-764.
doi: 10.1038/35001568 |
[21] | 吴凤芝, 王学征. 设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系. 中国农业科学, 2007, 40(10):2274-2280. |
[22] | 胡元森, 吴坤, 李翠香, 等. 黄瓜连作对土壤微生物区系影响Ⅱ—基于DGGE方法对微生物种群的变化分析. 中国农业科学, 2007, 40(10):2267-2273. |
[23] | Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 2016, 32(2):14-20. |
[24] | 韦建玉, 王政, 徐天养, 等. 秸秆覆盖与揭膜互作对坡耕地烟田土壤细菌群落及烟叶品质的影响. 土壤通报, 2021, 52(1):82-89. |
[25] |
Fontúrbel M T, Barreiro A, Vega J A, et al. Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities. Geoderma, 2012, 191:51-60.
doi: 10.1016/j.geoderma.2012.01.037 |
[26] |
Philippot L, Spor A, Hěnault C, et al. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 2013, 7:1609-1619.
doi: 10.1038/ismej.2013.34 |
[27] | 张贵云, 吕贝贝, 张丽萍, 等. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响. 中国农业生态学报, 2019, 27(3):358-368. |
[28] | 李忠佩, 吴晓晨, 陈碧云. 不同利用方式下土壤有机碳转化及微生物群落功能多样性研究. 中国农业科学, 2007, 6(10):1235-1246. |
[29] |
Duan R, Long X E, Tang Y F, et al. Effects of different fertilizer application methods on the community of nitrifiers and denitrifiers in a paddy soil. Journal of Soils and Sediments, 2018, 18(1):24-38.
doi: 10.1007/s11368-017-1738-9 |
[30] | Tao Y Z, Di X, Forestry S O, et al. Fire interference on forest soil microbial communities and the mechanism: a review. Scientia Silvae Sinicae, 2013, 49(11):146-157. |
[31] |
Wan W, Tan J, Wang Y, et al. Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction,and function. Science of The Total Environment, 2020, 700(15):134418.
doi: 10.1016/j.scitotenv.2019.134418 |
[32] | Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE, 2011, 6(2):el7000. |
[33] |
Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15):5111-5120.
doi: 10.1128/AEM.00335-09 pmid: 19502440 |
[34] |
Gu Y F, Wang Y Y, Lu S E, et al. Long-term fertilization structures bacterial and archacal communities along soil depth gradient in a paddy soil. Frontiers in Microbiology, 2017, 8:1516.
doi: 10.3389/fmicb.2017.01516 |
[35] |
Li C, Yan K, Tang L, et al. Changes in deep soil microbial communities due to long-term fertilization. Soil Biology & Biochemistry, 2014, 75:264-272.
doi: 10.1016/j.soilbio.2014.04.023 |
|