Crops ›› 2022, Vol. 38 ›› Issue (4): 154-159.doi: 10.16035/j.issn.1001-7283.2022.04.021

Previous Articles     Next Articles

Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping

Xie Kuizhong1(), Sun Xiaohua1, Luo Aihua1, Liu Yongqiang1, Tang Dejing2, Zhu Yongyong3, Hu Xinyuan1()   

  1. 1Potato Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    3Gansu Agricultural Technology Extension Station, Lanzhou 730020, Gansu, China
  • Received:2022-03-29 Revised:2022-05-22 Online:2022-08-15 Published:2022-08-22
  • Contact: Hu Xinyuan E-mail:xiekz79@163.com;844374905@qq.com

Abstract:

In order to study the effects of trace element zinc on the disease resistance and soil borne diseases of long-term continuous cropping potato, a field experiment with five treatments of 0 (CK), 15, 30, 45 and 60kg/ha ZnSO4·7H2O were set in the potato field of five consecutive years from 2020 to 2021. The activities of disease resistance-related enzymes in potato roots of each treatment were measured, soil borne diseases were investigated, and the yield was measured and analyzed. The results showed that the activities of superoxide dismutase, peroxidase and catalase in roots increased significantly of long-term continuous cropping potato after base fertilizer was added with zinc fertilizer. The content of malondialdehyde (MDA) in roots decreased first and then increased with the increase of zinc in base fertilizer. When 30kg/ha ZnSO4·7H2O was added into the base fertilizer, the incidence rate and disease index of Fusarium Wilt and Rhizoctonia solani were the lowest, with the lowest rate of diseased potato, the highest rate of commercial potato, and the maximum economic yield of potato after harvest. To summarise, adding 30kg/ha ZnSO4·7H2O can effectively improve the activities of disease resistance-related enzymes of long-term continuous cropping potato roots, decrease MDA content, incidence rates and disease indexes of Fusarium Wilt and Rhizoctonia solani, disease rate of potato after harvest, and increase rate of commercial potato, so as to increase economic yield of potato.

Key words: Potato, Long-term continuous cropping, Zinc fertilizer, Soil borne diseases, Disease resistance- related enzymes, Economic yield

Table 1

Classification criteria for potato Fusarium Wilt and Rhizoctonia solani"

病害
Disease
级别
Grade
标准
Standard
枯萎病
Fusarium Wilt
0 叶片没有明显枯黄萎蔫,植株生长正常
1 1%~25%的叶片枯黄萎蔫
2 26%~50%的叶片枯黄萎蔫
3 51%~75%的叶片枯黄萎蔫
4 75%以上的叶片萎蔫或整株枯死
黑痣病
Rhizoctonia solani
0 薯块表面没有菌核
1 菌核面积占整个薯块面积的1%~5%
2 菌核面积占整个薯块面积的6%~35%
3 菌核面积占整个薯块面积的36%~65%
4 菌核面积占整个薯块面积的66%~95%
5 菌核面积占整个薯块面积的96%以上

Fig.1

Effects of zinc fertilizer base application rate on POD activity of potato roots Different lowercase letters indicate significant difference at the 5% level, the same below"

Fig.2

Effects of zinc fertilizer base application rate on SOD activity of potato roots"

Fig.3

Effects of zinc fertilizer base application rate on CAT activity of potato roots"

Fig.4

Effects of zinc fertilizer base application rate on MDA content of potato roots"

Table 2

Effects of zinc fertilizer application rate on soil borne diseases of long-term continuous cropping potato"

年份
Year
锌肥施用量
Zinc fertilizer application amount (kg/hm2)
枯萎病Fusarium Wilt 黑痣病Rhizoctonia solani
发病率Incidence (%) 病情指数Disease index 发病率Incidence (%) 病情指数Disease index
2020 0 (CK) 12.67±1.20a 7.83±0.76a 9.14±2.20a 9.97±2.25a
15 6.67±1.20b 3.83±0.58b 2.90±1.40c 2.36±1.20c
30 4.00±2.00c 2.00±1.00c 1.24±0.82cd 2.06±1.00c
45 5.33±1.20bc 3.00±0.87bc 3.68±1.20bc 0.46±0.28c
60 6.00±1.00bc 3.33±0.29b 4.57±1.42b 4.84±1.20b
2021 0 (CK) 29.33±2.31a 10.33±0.58a 16.00±2.00a 5.07±1.29a
15 20.00±4.00b 6.67±1.53b 11.33±1.15 b 2.93±0.46b
30 12.00±1.20c 3.67±0.58bc 12.00±0.00 b 3.07±0.46b
45 16.00±4.00bc 5.33±1.53bc 12.00±0.00 b 3.07±0.23b
60 17.33±2.31bc 5.00±1.00c 13.33±3.06ab 4.27±1.15ab

"

年份
Year
锌肥施用量
Zinc fertilizer application
amount (kg/hm2)
病薯率
The ratio of diseased tuber (%)
商品薯率
The ratio of marketable tuber (%)
经济产量
Economic yield
(kg/hm2)
个数Number 重量Weight 个数Number 重量Weight
2020 0 (CK) 9.41±1.46a 9.97±1.84a 61.47±1.62b 83.44±2.41b 42 333.55±284.80c
15 2.90±0.25c 2.36±0.38c 65.15±1.41ab 87.13±1.78ab 46 989.12±509.18b
30 1.24±0.28d 2.06±1.65c 67.31±1.01a 89.38±2.04a 51 178.03±2464.05a
45 3.68±0.68bc 0.46±0.07c 66.54±1.11a 86.63±1.96ab 51 133.59±818.54a
60 4.57±1.01b 4.84±1.20b 63.49±1.74ab 85.54±1.62b 50 555.81±3509.11ab
2021 0 (CK) 10.57±1.41a 8.46±2.20a 89.43±1.41d 59.37±4.04b 28 031.89±180.28c
15 4.24±2.10cd 2.68±1.04bc 95.76±2.10ab 67.22±3.62ab 29 174.75±928.68b
30 2.87±0.56d 0.80±0.29c 97.13±0.56a 67.29±1.07ab 30 206.50±54.99a
45 6.00±0.85bc 3.11±0.38bc 94.00±0.85bc 69.72±4.66a 29 857.29±0.00ab
60 7.08±0.61b 5.80±2.76ab 92.92±0.60c 63.70±6.85ab 29 650.94±270.78ab
[1] 张坤. 甘肃省定西市安定区马铃薯地理标志品牌竞争力研究. 武汉:武汉轻工大学, 2021
[2] 谢奎忠, 胡新元, 张彤彤, 等. 不同杀菌剂对旱地连作马铃薯土壤水分效应、微生物和产量的影响. 草业学报, 2019, 28(7):103-111.
[3] 卜东升, 水涌, 张涛, 等. 阿克苏垦区连作棉田土壤养分变化研究. 土壤肥料, 2017(4):29-30.
[4] 谢奎忠, 陆立银, 罗爱花, 等. 长期连作对马铃薯土传病害和产量的影响. 中国种业, 2018(2):65-67.
[5] Huang L F, Song L X, Xia X J, et al. Plant-soil feedbacks and soil sickness:From mechanisms to application in agriculture. Journal of Chemical Ecology, 2013, 39:232-242.
doi: 10.1007/s10886-013-0244-9
[6] 张庆霞, 宋乃平, 王磊, 等. 马铃薯连作栽培的土壤水分效应研究. 中国生态农业学报, 2010, 18(6):1212-1217.
[7] Marschner P. Marschner’s mineral nutrition of higher plants. London: Academic Press, 2011.
[8] Huber D M, Haneklaus S. Managing nutrition to control plant disease. Landbauforsch Volk, 2007, 57:313-322.
[9] Cakmak I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 2000, 146(2):185-205.
doi: 10.1046/j.1469-8137.2000.00630.x
[10] Simoglou K B, Dordas C. Effect of foliar applied boron,manganese and zinc on tan spot in winter durum wheat. Crop Protection, 2006, 25(7):657-663.
doi: 10.1016/j.cropro.2005.09.007
[11] Dordas C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development, 2008, 28(1):33-46.
doi: 10.1051/agro:2007051
[12] 刘琦, 王张民, 潘斐, 等. 大田条件下水稻锌营养强化方法探究及效果评估. 土壤, 2019, 51(1):32-38.
[13] 司贤宗, 张翔, 索炎炎, 等. 施用锌肥和遮阴互作对花生生长发育、抗病性及产量的影响. 中国油料作物学报, 2018, 40(3):399-404.
[14] 甘立奎, 许昭建, 王磊. 施用硼、锌肥对烤烟生长及抗病性的影响. 基层农技推广, 2017, 5(11):45-47.
[15] 赵娜, 张振洲, 贾景丽, 等. 硫酸锌浸种对马铃薯生长发育及产量的影响. 杂粮作物, 2010(3):202-205.
[16] 刘新稳, 孙亮庆, 张丽娟, 等. 不同施锌量对马铃薯植株锌的吸收、积累及薯块产量的影响. 江西农业学报, 2018, 30(6):35-38.
[17] 曲延军, 蒙美莲, 张笑宇, 等. 马铃薯品种对枯萎病菌的抗性鉴定. 植物保护, 2015, 41(3):149-153.
[18] 朱亚萍, 李继明, 武汉军, 等. 旱作区不同生物药剂防治马铃薯土传病害试验. 中国马铃薯, 2020, 34(6):350-357.
[19] Arun K B, Chandran J, Dhanya R, et al. A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Bioscience, 2015, 9(4):36-46.
doi: 10.1016/j.fbio.2014.10.003
[20] Cakamak I. Enrichment of cereal grains with zinc:agronomic or genetic biofortification. Plant and Soil, 2008, 302(1/2):1-17.
doi: 10.1007/s11104-007-9466-3
[21] 朱盼盼, 马彦平, 周忠雄, 等. 微量元素锌与植物营养和人体健康. 肥料与健康, 2021, 48(5):16-18.
[22] Zhang Y Q, Deng Y, Chen R Y, et al. The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant and Soil, 2012, 361(1/2):143-152.
doi: 10.1007/s11104-012-1238-z
[23] 杨文英, 靳利娥. 效应物对辣椒过氧化物酶活性和稳定性的影响. 太原理工大学学报, 2017, 48(4):576-581.
[24] 孙天国, 沙伟, 接晶. 锌胁迫对甜瓜幼苗生理活性的影响. 北方园艺, 2010(16):51-53.
[25] 刘家庆, 金爱武, 王意锟, 等. 毛竹孕笋期施用外源锌对叶片SOD、POD和IAAO酶活性的影响. 竹子研究汇刊, 2014, 33(1):31-35.
[26] 刘祚军, 黄胜威, 李明浩, 等. 拟南芥铜锌超氧化物歧化酶解聚的中间态性质. 生物学杂志, 2020, 37(6):51-54.
[27] 胡瑞斌, 孙芳, 任美凤, 等. 蒜苗过氧化氢酶的分离纯化及部分性质研究. 食品科学, 2013, 34(9):250-255.
[28] 宋程飞, 吴兰军, 段雨, 等. 绿薄荷茎、叶乙醇提取物对小菜蛾幼虫3种保护酶的影响. 山西农业大学学报(自然科学版), 2020, 40(4):73-81.
[29] 赵庆芳, 殷金梅, 高晓霞, 等. 铜或锌胁迫对小麦根中抗氧化系统的影响. 西北师范大学学报(自然科学版), 2017, 53(4):92-97.
[30] 周洋, 于道德, 胡芯, 等. 铅锌胁迫下轮叶黑藻的吸附水平及生理响应. 水生生物学报, 2021, 45(6):1273-1280.
[31] 高质, 林葆, 周卫. 锌素营养对春玉米内源激素与氧自由基代谢的影响. 植物营养与肥料学报, 2001, 7(4):424-428.
[32] 廉华, 马光恕, 王彦宏, 等. 硫酸锌浸种对马铃薯幼苗质量的影响. 黑龙江八一农垦大学学报, 2010, 22(5):4-8.
[33] 贾景丽, 张振洲, 周一芳, 等. 硫酸锌浸种对马铃薯产量和品质的影响研究. 中国马铃薯, 2010, 24(1):18-21.
[34] 马光恕, 廉华, 冯云霞, 等. 叶面喷施硫酸锌对马铃薯淀粉合成和积累的影响. 中国土壤与肥料, 2010(4):46-52.
[35] 闫东, 白云龙, 林利龙, 等. 黄腐酸螯合锌不同施用方式对马铃薯商品率和产量的影响. 现代农业, 2017(12):30-31.
[1] Chen Yuzhen, Tang Guangbin, Ma Xianxin, Tian Guiyun, Yu Hongxin, Luo Yingluo, Fan Mingshou, Jia Liguo. Four Major Regulatory Pathways of Potato Tuber Development [J]. Crops, 2022, 38(4): 9-13.
[2] Liu Ju, Li Guangcun, Duan Shaoguang, Hu Jun, Jian Yinqiao, Liu Jiangang, Jin Liping, Xu Jianfei. The Effects of Different Night Temperature Treatments on in vitro Tuberization and Related-Genes Expression in Potato [J]. Crops, 2022, 38(3): 92-98.
[3] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[4] Liu Yajun, Wang Wenjing, Wang Honggang, Wang Qi, Hu Qiguo, Chu Fengli. Effects of Crop Rotation on Soil Microbial Community in Sweet Potato Field [J]. Crops, 2021, 37(6): 122-128.
[5] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[6] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[7] Luo Lei, Li Yajie, Yao Yanhong, Li Fengxian, Fan Yi, Dong Aiyun, Liu Huixia, Niu Caiping, Li Deming. Effects of Planting Small Whole Potatoes with Different Specifications and Seed Dressing on the Growth and Yield of Potatoes in Continuous Cropping Land [J]. Crops, 2021, 37(6): 211-216.
[8] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
[9] Zhang Wei, Li Zhixin, Zhao Xue, Zhang Jinpeng, Fu Chunjiang, Yu Qianqian, Liu Weiping. Development of a Double Test Strip for the Detection of Potato Virus X and Y [J]. Crops, 2021, 37(6): 62-66.
[10] Hu Qiguo, Liu Yajun, Wang Wenjing, Wang Qi, Wang Honggang, Chu Fengli. Effects of Sweet Potato Rotation and Intercropping on the Microbial Community of Rhizosphere Soil [J]. Crops, 2021, 37(5): 153-159.
[11] Lou Shubao, Li Fengyun, Tian Guokui, Wang Haiyan, Tian Zhendong, Wang Lichun, Liu Xicai, Wang Hui. Evaluation of Germplasms for Resistance to Potato Late Blight and Molecular Markers Assisted Screening [J]. Crops, 2021, 37(4): 196-201.
[12] Yang Ping, Chen Yuli, Gong Fajiang, Bi Haibin, Gao Minghui. Bulking Characteristics of Potato Tubers and Its Correlation with Tuber Fresh Weight [J]. Crops, 2021, 37(2): 130-134.
[13] Qiu Tian, Niu Lili, Zhu Jiang, Cai Fuge, Wang Qingwei. Effects of Three Growth Regulators on the Growth of Potato Test-Tube Seedlings [J]. Crops, 2021, 37(2): 160-164.
[14] Duan Huimin, Lu Xiao, Zhou Xiaojie, Li Gaofeng, Wen Guohong, Wang Yuping, Cheng Lixiang, Zhang Feng. Effects of Potato Leaf Type and Planting Density on Yield Components [J]. Crops, 2021, 37(1): 160-167.
[15] Yang Yunma, Yang Junfang, Jia Liangliang, Xing Suli, Fan Jianying, Feng Zhiming, Zhang Shuqing, Xiang Congchao, Huang Shaohui, Liu Xuetong. Nutrient Absorption and Suitable Quantity of Spring Potato in Hebei Double Cropping Cultivated Region [J]. Crops, 2020, 36(6): 170-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!