Crops ›› 2023, Vol. 39 ›› Issue (6): 121-126.doi: 10.16035/j.issn.1001-7283.2023.06.017

Previous Articles     Next Articles

Study on Effects of Operation Parameters on Deposition Distribution of UAV Droplets of Sugarcane during Elongating Stage

Zhou Huiwen1(), Yan Haifeng1, Qiu Lihang1, Fan Yegeng1, Zhou Zhongfeng1, Luo Ting1, Deng Yuchi1, Zhang Xiaoqiu1, Liang Yongjian2, Chen Rongfa1(), Wu Jianming1()   

  1. 1Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Sugarcane Genetic Improvement of Guangxi, Nanning 530007, Guangxi, China
    2Guangxi South Subtropical Agricultural Sciences Research Institute, Longzhou 532415, Guangxi, China
  • Received:2022-08-25 Revised:2022-09-19 Online:2023-12-15 Published:2023-12-15

Abstract:

To optimize operation parameters for spraying sugarcane via unmanned aerial vehicle (UAV), we conducted a study on the effects of four-rotor electric UAV spraying sugarcane fog droplets during the elongation stage. The study utilized a five-factor and three-level orthogonal experiment to investigate the impact of chemical regulating agents, operation height, flying speed, spraying volume, and adjuvants on sugarcane canopy deposition and droplet penetration. The results showed that, the factors impacted the amount of droplet deposition followed by the adjuvants, flying speed, spraying volume, operation height, and chemical regulating agent, respectively. The factors impacted the droplet uniformity followed by adjuvants, flying speed, operation height, respectively. The optimal operational parameters were a spraying volume of 30L/ha, an operation height of 4m, a flying speed of 6m/s, and the use of the adjuvant “Jiajiali”. This study can provide a theoretical foundation for the application of UAV during the elongation stage of sugarcane.

Key words: Sugarcane, UAV, Operation parameters, Droplet deposition, Droplet uniformity

Fig.1

Diagram of sugarcane growth and sampling (a) sugarcane growth, (b) sampling diagram"

Table 1

The factors and levels of experiment treatments"

水平
Level
化学调控剂
Chemical regulating agent
作业高度
Operation height (m)
飞行速度
Flying speed (m/s)
喷施量
Spraying volume (L/hm2)
助剂
Adjuvant
1 3 4 15.0 农博士
2 硼酸+磷酸氢二钾 4 5 22.5 加加力
3 碳长+赤霉素 5 6 30.0

Table 2

The design of orthogonal experiment"

试验编号Treatment No. A B C D E 试验编号Treatment No. A B C D E
1 1 1 1 1 1 10 1 1 3 3 2
2 1 2 2 2 2 11 1 2 1 1 3
3 1 3 3 3 3 12 1 3 2 2 1
4 2 1 1 2 2 13 2 1 3 3 3
5 2 2 2 3 3 14 2 2 1 1 1
6 2 3 3 1 1 15 2 3 2 2 2
7 3 1 2 1 2 16 3 1 2 2 1
8 3 2 3 2 3 17 3 2 3 3 2
9 3 3 1 3 1 18 3 3 1 1 3

Table 3

The results of the amount of droplet deposition and RS"

试验编号
Treatment
No.
雾滴沉积量The amount of droplet deposition (μL/cm2) RS
上部
The upper part
中部
The middle part
下部
The lower part
雾滴平均沉积量
The average amount of droplet deposition
1 0.54±0.04gh 0.48±0.03e 0.32±0.01e 0.44±0.01f 0.95±0.01c
2 0.17±0.01j 0.16±0.01j 0.09±0.01ij 0.14±0.01j 0.87±0.04fg
3 0.80±0.04de 0.57±0.05de 0.35±0.02de 0.57±0.03e 1.03±0.01abc
4 1.89±0.30a 1.31±0.11a 0.81±0.04a 1.34±0.11a 1.08±0.04ab
5 0.75±0.12ef 0.51±0.01d 0.40±0.02d 0.55±0.04e 0.89±0.04defg
6 0.29±0.02j 0.24±0.02i 0.22±0.03fgh 0.25±0.01h 0.97±0.02bcdef
7 0.54±0.02gh 0.45±0.06e 0.24±0.03fg 0.41±0.05f 1.04±0.01abc
8 0.27±0.01ij 0.22±0.01ij 0.19±0.01gh 0.23±0.04hi 1.00±0.01abcde
9 0.62±0.03fg 0.44±0.02ef 0.26±0.03f 0.44±0.02f 0.97±0.04bcdef
10 0.95±0.04cd 0.65±0.05c 0.46±0.01c 0.69±0.08c 0.97±0.04bcdef
11 0.16±0.02j 0.07±0.01k 0.04±0.01j 0.09±0.01j 0.82±0.01g
12 0.29±0.00ij 0.28±0.01hi 0.19±0.02h 0.25±0.01h 0.89±0.03defg
13 0.32±0.02ij 0.20±0.02ij 0.20±0.00gh 0.24±0.01hi 1.03±0.01abc
14 0.43±0.01hi 0.33±0.02gh 0.23±0.02fgh 0.33±0.04g 1.06±0.05abc
15 1.20±0.06b 0.36±0.01fg 0.32±0.02e 0.63±0.07d 1.01±0.08abcd
16 0.24±0.02j 0.22±0.01ij 0.13±0.00i 0.20±0.01i 0.88±0.04efg
17 1.06±0.07bc 0.98±0.06b 0.61±0.08b 0.88±0.12b 1.00±0.04abcde
18 0.59±0.02fgh 0.45±0.03e 0.23±0.01fgh 0.43±0.06f 1.10±0.16a

Table 4

The result of the droplet uniformity"

试验编号
Treatment No.
标准差
Standard deviation
雾滴均匀性
Droplet uniformity (%)
试验编号
Treatment No.
标准差
Standard deviation
雾滴均匀性
Droplet uniformity (%)
1 0.095 21.30±1.98gh 10 0.204 29.52±1.51cdefg
2 0.037 26.93±3.73cdefg 11 0.051 55.34±4.61b
3 0.184 32.06±1.39cde 12 0.046 18.26±3.47hi
4 0.449 33.37±7.02cd 13 0.056 23.63±4.01efgh
5 0.148 26.34±6.63defgh 14 0.083 25.41±2.93degh
6 0.032 12.67±3.31i 15 0.407 64.81±2.51a
7 0.126 30.66±3.51cdef 16 0.051 25.93±1.85defgh
8 0.030 13.05±2.59i 17 0.197 22.39±3.64fgh
9 0.148 33.51±3.04cd 18 0.150 35.23±1.94c

Table 5

Variance analysis of the amount of droplet deposition and droplet uniformity"

来源
Source
df 雾滴沉积量The amount of droplet deposition 雾滴均匀性Droplet uniformity
均方
Mean square
F检验
F test
显著性水平
Sig.
均方
Mean square
F检验
F test
显著性水平
Sig.
校正模型Calibration model 17 0.28 354.73 0 0.05 25.37 0
截距Intercede 1 10.96 14 055.49 0 4.69 2352.93 0
T 17 0.28 354.73 0 0.05 25.37 0
误差Error 36 0.001 0.002
总计Total 54

Table 6

Variance ratio of droplet deposition"

因素
Factor
方差占比
Variance ratio (%)
因素
Factor
方差占比
Variance ratio (%)
因素
Factor
方差占比
Variance ratio (%)
因素
Factor
方差占比
Variance ratio (%)
A 6.20 A 1.92 A 0.44 A 20.75
B 3.38 B 6.07 B 10.09 B NA
C 22.74 C 37.06 C NA C 13.57
D 13.60 D NA D 4.16 D 15.24
E 31.97 E 20.09 E 34.07 E 12.90
E:D 31.45 E:C 48.29 E:B 29.23

Table 7

Variance ratio of droplet uniformity"

因素
Factor
方差占比
Variance ratio (%)
因素
Factor
方差占比
Variance ratio (%)
因素
Factor
方差占比
Variance ratio (%)
因素
Factor
方差占比
Variance ratio (%)
A 7.76 A 3.49 A 3.65 A 11.86
B 9.25 B 12.33 B 16.91 B 4.27
C 14.24 C 25.61 C NA C 9.79
D 7.71 D 2.80 D 2.04 D 11.07
E 34.10 E 26.40 E 38.93 E 24.98
E:D 17.68 E:C 22.14 E:B 19.91
[1] 刘晓雪, 田冰, 白晨. 我国糖料产业发展特点、问题与趋势. 中国糖料, 2019, 41(2):47-51.
[2] 刘俊仙, 李松, 谭芳, 等. 多效唑浸种对甘蔗幼苗分蘖发生及生理特性变化的影响. 广东农业科学, 2016, 43(4):38-43.
[3] 刘俊仙, 李松, 谭芳, 等. 多效唑浸种对甘蔗分蘖提早萌发及幼苗内源激素含量的影响. 湖南农业科学, 2016(2):22-25,30.
[4] 范业赓, 陈荣发, 周慧文, 等. 不同植物生长调节剂浸种对甘蔗分蘖及产量性状的影响. 中国糖料, 2019, 41(2):23-27.
[5] 吴建明, 李杨瑞, 杨柳, 等. 赤霉素诱导甘蔗节间伸长与内源激素变化的关系. 热带作物学报, 2009, 30(10):1452-1457.
[6] 吴建明, 李杨瑞, 王爱勤, 等. 赤霉素处理对甘蔗节间伸长及产量的影响. 中国糖料, 2010(4):24-26.
[7] 李杨瑞, 杨丽涛, 叶燕萍, 等. 甘蔗应用乙烯利增产增糖的机理研究. 西南农业学报, 2007, 20(1):151-156.
[8] 郭强, 黄有总, 李怡香, 等. 甘蔗增糖增产剂对不同甘蔗品种(系)产量和品质的影响. 热带农业科技, 2012, 35(2):30-33.
[9] 陈迪文, 周文灵, 敖俊华, 等. 粤西蔗区无人机喷施甘蔗增糖剂应用研究. 甘蔗糖业, 2020(1):17-22.
[10] 谢金兰, 梁阗, 罗亚伟, 等. 不同灌水量对甘蔗伸长期生长的影响. 广东农业科学, 2011, 38(7):45-46,50.
[11] 牛俊奇, 苗小荣, 王道波, 等. 高、低糖甘蔗品种伸长期糖分积累特征及代谢相关酶活性分析. 江苏农业学报, 2019, 35(3):537-543.
[12] 侯昭武, 李尚平, 张小军, 等. 智能化甘蔗喷药系统的设计. 农机化研究, 2010, 32(10):78-82.
[31] 陶波, 张宇航, 田丽娟, 等. 飞防助剂对植保无人飞机喷施除草剂雾滴分布的影响. 植物保护, 2021, 47(1):108-116.
[13] 秦芳, 何铁光, 苏利荣, 等. 南方旱坡地土壤雨季径流量与养分流失的研究. 水土保持研究, 2016, 23(2):19-22.
[14] 王磊, 周建平, 许燕, 等. 农用无人机的应用现状与展望. 农药, 2019, 58(9):625-630,634.
[15] 郭祥雨, 薛新宇, 秦维彩, 等. 植保无人机作业参数对棕榈树雾滴沉积的影响. 中国农机化学报, 2021, 42(6):35-40.
doi: 10.13733/j.jcam.issn.2095-5553.2021.06.06
[16] 余文胜, 郑文钟, 洪一前, 等. 植保无人机作业参数对雾滴在茶树冠层沉积分布影响研究. 中国农机化学报, 2020, 41(12):30-35.
doi: 10.13733/j.jcam.issn.2095-5553.2020.12.007
[17] 范鑫, 王建国, 兰玉彬, 等. 飞行参数对结荚期花生航空施药雾滴沉积特性的影响. 中国农机化学报, 2020, 41(12):36-41.
doi: 10.13733/j.jcam.issn.2095-5553.2020.12.008
[18] 王军锋, 罗博韬, 霍元平, 等. 助剂影响大载荷植保无人机喷洒沉积特性的试验研究. 排灌机械工程学报, 2019, 37(12):1044-1049.
[19] 焦雨轩, 薛新宇, 丁素明, 等. 不同施药浓度对药液雾滴特性与沉积规律的影响. 植物保护学报, 2021, 48(3):554-562.
[20] 马钰, 贡常委, 张韫政, 等. 喷头类型对植保无人机低容量喷雾雾滴在稻田冠层沉积分布及防治效果的影响. 植物保护学报, 2021, 48(3):518-527.
[21] 张小秋, 梁永检, 宋修鹏, 等. 植保无人机喷施甘蔗的雾滴沉积量与农药残留量分析. 农药, 2020, 59(10):750-753.
[22] 陈荣发, 范业赓, 丘立杭, 等. 甘蔗喷施新型增产增糖剂效果研究. 甘蔗糖业, 2021, 50(5):23-29.
[23] 陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较. 华南农业大学学报, 2017, 38(4):103-109.
[24] 中国民用航空局. 农业航空作业质量技术指标第1部分:喷洒作业:MH/T 1002.1-2016. 北京: 中国民航出版社, 2016.
[25] 王代懿, 孙大方, 陈冬华. SPSS在有交互作用正交试验结果方差分析中的应用. 焦作师范高等专科学校学报, 2021, 37(4):73-76.
[26] 卢向阳, 刘伟成, 卢彩鸽, 等. 几种喷雾助剂对纳他霉素叶面吸收的影响. 农药, 2014, 53(1):69-72.
[27] Ellism C B, Tuck C R, Miller P C H. The effect of some adjuvants on sprays produced by agricultural flatfan nozzles. Crop Protection, 1997, 1(16):41-50.
[28] Miller P C H, Ellis M C B. Effects of formulationon spray nozzle performance for applications from ground-based boom sprayers. Crop Protection, 2000, 19(8/9/10):609-615.
doi: 10.1016/S0261-2194(00)00080-6
[29] 陈吟, 齐浩亮, 张龙, 等. 大田环境中不同助剂和喷头对无人机喷洒雾滴分布和漂移的影响. 华南农业大学学报, 2020, 41(6):50-58.
[30] 袁会珠, 徐映明, 芮昌辉. 农药应用指南. 北京: 中国农业科学技术出版社, 2011.
[1] Yi Xiang, Lü Xin, Zhang Lifu, Tian Min, Zhang Ze, Fan Xianglong. Unmanned Aerial Vehicle Hyperspectral Estimation of Nitrogen Content in Cotton Leaves Based on RF and SPA [J]. Crops, 2023, 39(2): 245-252.
[2] Liang Yongjian, Wu Wenzhi, Shi Zesheng, Tang Liqiu, Song Xiupeng, Yan Meixin, Guo Qiang, Qin Changxian, He Hongliang, Zhang Xiaoqiu. Estimation of Sugarcane Plant Height Based on UAV RGB Remote Sensing [J]. Crops, 2023, 39(1): 226-232.
[3] Su Lirong, Tan Yumo, Qin Fang, Li Qin, Zeng Chengcheng, Li Zhongyi, Wei Caihui, Dong Wenbin, Liang Jun, He Tieguang. Effects of Reduced Chemical Fertilizer on Yield and Main Agronomic Traits of Ratoon Sugarcane under Conditions of Returning Green Mung Bean/Black Bean into Field [J]. Crops, 2022, 38(6): 105-110.
[4] Yan Peng, Dong Xuerui, Lu Lin, Fang Mengying, Li Yijie, Wang Weizan, Dong Zhiqiang. Effects of NAA/KT Presoaking on Sugarcane Yield, Root Development and Lodging Resistance [J]. Crops, 2022, 38(4): 99-106.
[5] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[6] Cheng Qin, Tan Qinliang, Li Jiahui, Zhu Pengjin, Zhou Quanguang, Ou Kewei, Lu Yefei, Lü Ping, Pang Xinhua. Endogenous Hormones and Enzyme Activity Analysis in Sugarcane Varieties with Different Perennial Root Ages [J]. Crops, 2022, 38(3): 181-186.
[7] Liu Limin, Liu Hongjian, Li Aomei, He Weizhong. Effects of Light and Temperature on Photoautotrophic Rooting for in Vitro Sugarcane Plantlets [J]. Crops, 2022, 38(2): 153-157.
[8] Luo Hanmin, Xiong Faqian, Qiu Lihang, Liu Jing, Duan Weixing, Gao Yijing, Qin Xiayan, Wu Jianming, Li Yangrui, Liu Junxian. Application Study of Molecular Markers Associated with Traits in Sugarcane Molecular Breeding [J]. Crops, 2022, 38(2): 35-43.
[9] Li Jiahui, Cheng Qin, Ou Kewei, Tan Qinliang, Pang Xinhua, Zhou Quanguang, Lü Ping, Song Qiqi, Tang Yuwei, Zhu Pengjin. Comparison of Tiller Characters of Sugarcane Varieties (Lines) in Different Sugarcane Regions and Their Effects on Yield and Yield Components [J]. Crops, 2021, 37(5): 79-86.
[10] Guo Qiang, Ma Wenqing, Qin Changxian, Shi Zesheng, Peng Chong, Bi Dejin, He Hongliang, Liang Yongjian, Tang Liqiu. Comprehensive Evaluation of New Sugarcane Clones by DTOPSIS Method [J]. Crops, 2021, 37(4): 32-37.
[11] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[12] Xu Lin, Wu Kaichao, Pang Tian, Deng Zhinian, Zhang Ronghua, Huang Chengfeng, Huang Hairong, Li Yijie, Liu Xiaoyan, Qin Wenxian, Wang Weizan. Effects of Root Promoting Agent on the Development and Yield in Single Bud of Sugarcane [J]. Crops, 2020, 36(6): 132-136.
[13] Xie Jinlan, Lin Li, Li Changning, Luo Ting, Mo Zhanghong. Effects of Intercropping Mungbean Straw Returning on Sugarcane Growth and Nitrogen Metabolism under Nitrogen Fertilizer Reduction [J]. Crops, 2020, 36(4): 164-169.
[14] Wang Meng, Sui Xueyan, Liang Shouzhen, Hou Xuehui, Liang Yongquan. Research on the Method of Extracting Crop Vegetation Coverage Using UAV Remote Sensing Technology [J]. Crops, 2020, 36(3): 177-183.
[15] Fan Yegeng,Yan Haifeng,Chen Rongfa,Qiu Lihang,Zhou Huiwen,Huang Xing,Weng Mengling,Wu Jianming,Li Yangrui,Wei Shengman. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!