Crops ›› 2024, Vol. 40 ›› Issue (5): 228-234.doi: 10.16035/j.issn.1001-7283.2024.05.032

Previous Articles     Next Articles

Study of Highly Efficient Cultivation Technique of Inter Cropping Sweet Potato Longzi 9 in Tobacco Field

Huang Yanxia1(), Chen Genhui1, Lin Jianfu2, Guo Qimao1, Huang Kangde1, Silang Quncuo1, Xie Lijun1, Lin Zilong1()   

  1. 1Longyan Agricultural Science Research Institute, Longyan 364000, Fujian, China
    2Longyan Bureau of Agriculture and Rural Affairs, Longyan 364000, Fujian, China
  • Received:2024-03-12 Revised:2024-08-06 Online:2024-10-15 Published:2024-10-16

Abstract:

In order to explore the highly efficient cultivation conditions of Longzi 9 on tobacco field, the yield of fresh storage roots, large tuber rate, starch and soluble sugar contents were studied by the orthogonal test. The orthogonal test L9(34) was demonstrated that the best combination of fresh storage root yield was found by planting on June 1st, placing two sweet potato plants on opposite sides between two tobacco plants, applying humic acid fertilizer (15 kg/ha) and compound fertilizer 225 kg/ha, and the interaction between interplanting time (A) > fertilizer (C) > planting time and fertilizer (A×C) > planting methods (B), the best combination of yield of fresh storage roots was A2B1C2, obtained by planting on June 1th, planting two sweet potato plants on opposite sides between two tobacco plants, applying humic acid fertilizer 15 kg/ha and compound fertilizer 225 kg/ha. The main factors affecting the percentage of large storage roots of Longzi 9 was planting time. The highest large storage root rate was combination A1B1C1, when it was planted on May 20th, two sweet potato plants were planted on opposite sides between two tobacco plants, and 450 kg/ha compound fertilizer was applied. The effects on starch content were as follows: fertilizer (C) > interplanting time (A) > interaction between planting time and fertilizer (A×C) > planting methods (B). The highest starch content was combination A1B3C3, obtained by planting on May 20th, two sweet potato plants planted perpendicular to the ridge surface, fertilizer 16 L/ha and compound fertilizer 225 kg/ha was applied. The effects of different treatments on the soluble sugar contents of Longzi 9 were not obvious.

Key words: Sweet potato, Longzi 9, Intercropping sweet potato and tobacco, High efficiency cultivation

Table 1

Treatments in orthogonal experiment"

处理Treatment A B C 组合Combination
T1 1 1 1 A1B1C1
T2 1 2 2 A1B2C2
T3 1 3 3 A1B3C3
T4 2 1 2 A2B1C2
T5 2 2 3 A2B2C3
T6 2 3 1 A2B3C1
T7 3 1 3 A3B1C3
T8 3 2 1 A3B2C1
T9 3 3 2 A3B3C2

Table 2

Factor level design table"

因素
Factor
水平Level
1 2 3
栽期(月-日)Planting date (A, month-day) 05-20 06-01 06-10
栽插方式Planting method (B) 斜线对角栽 相对栽 垂直于垄面栽
肥料Fertilizer (C, kg/hm2) 化肥450 腐殖酸15+化肥225 海藻肥16+化肥225

Fig.1

Schematic diagram of planting method"

Table 3

The yield of fresh storage roots, large tuber rate, starch content and soluble sugar content by different treatments"

处理
Treatment
产量
Yield (kg/hm2)
大薯率
Large tuber rate (%)
淀粉含量(鲜薯)
Starch content (fresh) (mg/g)
可溶性糖含量(鲜薯)
Soluble sugar content (fresh) (mg/g)
T1 37 226.94±1945.52BCc 32.99±8.09Aa 121.44±21.37ABCbc 28.16±2.23Aa
T2 46 439.88±943.28ABCab 30.15±1.25ABab 121.15±3.47ABCbc 31.91±2.97Aa
T3 42 041.84±6396.62ABCabc 27.94±3.34ABabcd 150.76±3.51Aa 32.52±2.60Aa
T4 49 608.13±4008.94Aa 20.60±3.75ABabcde 110.78±26.50ABCc 32.17±2.97Aa
T5 47 544.59±1149.62ABab 16.30±1.54ABde 143.33±4.88ABab 30.09±5.02Aa
T6 46 085.53±1503.35ABCab 29.44±1.22ABabc 105.92±10.29BCc 28.86±2.65Aa
T7 41 124.72±5099.61ABCbc 17.69±6.41ABbcde 117.55±10.66ABCbc 34.67±3.89Aa
T8 35 434.38±2947.75Cc 12.94±6.84Be 95.01±5.63Cc 31.61±2.59Aa
T9 41 937.63±3360.44ABCabc 16.72±10.17ABcde 99.53±5.15Cc 34.19±3.16Aa

Table 4

Range of yield of different factors"

因素
Factor
极小值
Minimum
极大值
Maximum
极差
Range
调整极差
Modified range
A 39 498.91 47 746.08 8247.18 7427.96
B 42 653.26 43 355.00 701.74 632.03
C 39 582.28 45 995.21 6412.93 5775.91
A×C 42 236.39 44 550.04 2313.66 2083.83

Table 5

Analysis of variance for sweet potato yield in orthogonal experiment"

变异来源Variation source 平方和SS 自由度df 均方MS FF-value PP-value
A 215 876 015.14 2 107 938 007.57 8.73 0.0078
B 1 550 739.39 2 775 369.70 0.06 0.9396
C 125 820 749.60 2 62 910 374.80 5.09 0.0332
A×C 20 317 176.95 2 10 158 588.47 0.82 0.4700
误差Error 111 232 677.09 9 12 359 186.34

Fig.2

The yield of fresh storage roots, large tuber rate, starch and soluble sugar contents in different levels Different lowercase letters indicate significant difference at 0.05 level."

Table 6

Range of large tuber rate of different factors"

因素
Factor
极小值
Minimum
极大值
Maximum
极差
Range
调整极差
Modified range
A 15.78 30.36 14.58 13.13
B 19.80 24.70 4.90 4.41
C 20.65 25.12 4.48 4.03
A×C 20.50 25.76 5.26 4.74

Table 7

Analysis of variance for sweet potato of large tuber rate in orthogonal experiment"

变异来源
Variation source
平方和
SS
自由度
df
均方
MS
F
F-value
P
P-value
A 641.21 2 320.60 10.04 0.0051
B 81.16 2 40.58 1.27 0.3265
C 60.79 2 30.39 0.95 0.4218
A×C 88.17 2 44.08 1.38 0.3000
误差Error 287.41 9 31.93

Table 8

Range of starch contents of different factors"

因素
Factor
极小值
Minimum
极大值
Maximum
极差
Range
调整极差
Modified range
A 104.03 131.12 27.09 24.40
B 116.59 119.83 3.24 2.92
C 107.46 137.21 29.76 26.80
A×C 114.87 121.43 6.56 5.91

Table 9

Analysis of variance for sweet potato starch content in orthogonal experiment"

变异来源
Variation source
平方和
SS
自由度
df
均方
MS
F
F-value
P
P-value
A 2225.47 2 1112.73 6.74 0.0162
B 32.62 2 16.31 0.10 0.9068
C 3217.60 2 1608.80 9.75 0.0056
A×C 131.09 2 65.54 0.40 0.6834
误差Error 1484.90 9 164.99

Table 10

Range of soluble sugar content of different factors"

因素
Factor
极小值
Minimum
极大值
Maximum
极差
Range
调整极差
Modified range
A 30.38 33.49 3.11 2.80
B 31.20 31.86 0.65 0.59
C 29.54 32.76 3.21 2.89
A×C 30.81 32.10 1.29 1.16

Table 11

Analysis of variance for sweet potato soluble sugar content in orthogonal experiment"

变异来源
Variation source
平方和
SS
自由度
df
均方
MS
F
F-value
P
P-value
A 33.65 2 16.82 1.62 0.2508
B 1.36 2 0.68 0.07 0.9372
C 37.47 2 18.73 1.80 0.2195
A×C 5.48 2 2.74 0.26 0.7738
误差Error 93.50 9 10.39
[1] 冷鹏, 袁升凯, 崔爱华, 等. 甘薯(地瓜)套种西瓜“双瓜三收”高效栽培模式. 中国瓜菜, 2021, 34(9):127-129.
[2] 姚秋菊, 董海英, 王志勇, 等. 西瓜、甘薯套种高效栽培技术. 中国瓜菜, 2018, 31(8):58-59.
[3] 黄小燕. 东南沿海沙地西瓜-甘薯套作模式存在问题及改良措施. 中国果菜, 2019, 33(9):74-76.
[4] 姚秋菊, 王洪庆, 韩娅楠, 等. 小麦-朝天椒-西瓜-甘薯一年四茬高效栽培技术. 辣椒杂志, 2020, 18(4):28-31.
[5] 程志强. 开封地区西瓜—花生—甘薯一年三熟栽培技术. 中国瓜菜, 2016, 29(10):54-55.
[6] 刘卫星, 张金宝, 张枫叶, 等. 豫东棉田不同间作模式的产量与经济效益比较. 湖北农业科学, 2016, 55(22):5764-5766,5788.
[7] 赵大伟, 徐宁生, 杨华才, 等. 甘薯间作糯玉米的高产高效模式分析. 热带农业科学, 2018, 32(2):29-35.
[8] 房换香, 曹晓燕, 王同军. 黑芝麻、 甘薯套种技术. 乡村科技, 2014(7):1.
[9] 董翠, 杨新笋, 吴先国. 甘薯与大豆间作效应分析. 湖北农业科学, 2018, 57(增2):27-30.
[10] 李文平, 杨兵丽, 张顺林, 等. 西北山旱地正茬架豆套种甘薯高效栽培技术. 北方园艺, 2021(14):173-175.
[11] 徐小明. 福建辣椒王套种甘薯栽培模式研究. 福建热作科技, 2020, 45(3):4-5.
[12] 赵小莲. 烤烟套种甘薯高产高效栽培技术. 福建稻麦科技, 2020, 38(4):12-14.
[13] Yoshimoto M, Yamakao, Suda I. Physiological function of purple colored fleshed sweet potato. Food Processing, 1998, 33(8):15-17.
[14] 王关林, 岳静, 苏冬霞, 等. 甘薯花青素的抗氧化性及抑制肿瘤作用研究. 营养学报, 2006, 28(1):71-74.
[15] 王平, 沈学善, 屈会娟, 等. 不同基因型紫色甘薯品种主要品质性状在川中丘陵区的变化分析. 西南农业学报, 2018, 31 (2):230-237.
[16] 张辉, 张永春, 宁运旺, 等. 土壤与肥料对甘薯生长调控的研究进展. 土壤通报, 2012, 43(4):995-1000.
[17] 唐维, 李强, 张允刚, 等. 紫心甘薯新品种徐紫薯3号配套高效栽培技术. 西北农业学报, 2012, 21(3):108-113.
[18] 吴洁, 沈学善, 屈会娟, 等. 紫肉食用型甘薯品种川紫薯2号优化栽培技术. 江苏农业科学, 2020, 48(16):120-125.
[19] 尤瑞玲, 李红忠, 史本林. 能源型甘薯高产栽培技术研究. 中国农学通报, 2012, 28(12):118-123.
[20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[21] 福建统计年鉴:粮食作物播种面积. 北京: 中国统计出版社,2023:10-5.
[22] 郭其茂. 甘薯新品种龙薯9号的选育研究. 中国种业, 2017 (11):61-62.
[23] 徐硕, 谭效磊, 杨举田, 等. 烤烟套种甘薯综合效应研究. 现代农业科技, 2014(1):36.
[24] 张勇跃, 刘志坚, 秦素研, 等. 烟薯套种模式中甘薯品种和甘薯栽插时间探讨. 农业科技通讯, 2011(12):43-46.
[25] 张勇跃, 刘志坚, 秦素研, 等. 烟薯套种模式中烟叶密度和甘薯栽插方式的探讨. 山东农业科学, 2012, 44(3):47-49.
[26] 聂明建. 适合旱土间作套种的作物―甘薯. 作物研究, 2012, 26(1):70-73.
[27] 郝近羽, 陈源泉, 代红翠, 等. 不同有机物料还田后砂质土壤有机碳组分结构特征. 农业生物技术学报, 2022, 30(11):2201-2211.
[28] 任改弟, 张苗, 张文越, 等. 不同来源有机物料对菜用蚕豆生长和品质及根际土壤性状的影响. 土壤, 2022, 54(4):740-749.
[29] 瞿飞, 杨静, 赵夏云, 等. 不同有机物料对菌―菜轮作土壤质量的影响. 北方园艺, 2021(24):91-97.
[30] 桑文, 赵亚光, 张霁峰, 等. 化肥减量配施有机液体肥对加工番茄生长及土壤酶活性的影响. 中国土壤与肥料, 2021(2):53-60.
[31] 王盼, 郑庭茜, 卞荣军, 等. 基于生物质裂解活性有机物的有机―无机水溶肥对空心菜产量、品质及养分的影响. 土壤通报, 2018, 49(6):1377-1382.
[32] 秦鱼生, 涂仕华, 冯文强, 等. 平衡施肥对高淀粉甘薯产量和品质的影响. 干旱地区农业研究, 2019, 29(5):169-173.
[33] 崔丹丹, 杨锦, 耿银银, 等. 海藻肥对菜心抗旱性的影响及其机理探究. 植物营养与肥料学报, 2021, 27(7):1185-1197.
[34] Zhou G X, Qiu X W, Zhang J B, et al. Effects of seaweed fertilizer on enzyme activities, metabolic characteristics, and bacterial communities during maize straw composting. Bio- Resource Technology, 2019,286:121375.
[35] 张水勤, 袁亮, 林治安, 等. 腐植酸促进植物生长的机理研究进展. 植物营养与肥料学报, 2017, 23(4):1065-1076.
[1] Xiao Xiao, Zhong Kunquan, Tu Xiaoju, Yi Zhenxie. Effects of Low Temperature Acclimation Duration on Cold Tolerance Physiological Characteristics in Vegetable Sweet Potato Seedlings [J]. Crops, 2024, 40(5): 140-145.
[2] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[3] Liu Yajun, Lu Yun, Wang Wenjing, Hu Qiguo, Chu Fengli, Li Zhijie. Effects of Organic Fertilizer and Soil Conditioner on the Growth and Development of Continuous Cropping Sweet Potato and Soil Fertility [J]. Crops, 2024, 40(3): 168-174.
[4] Luo Yuankai, Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju. Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato [J]. Crops, 2024, 40(3): 231-237.
[5] Du Qingfu, Shang Lili, Lü Jiahao, Zhang Ruiqing, Yao Jiangang, Qiu Pengfei, Zhao Jianwei, He Shaozhen. Effects of Different Light Intensity on Photosynthetic Characteristics and Flowering of Sweet Potato [J]. Crops, 2024, 40(2): 172-177.
[6] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
[7] Jia Zhengrong, Hao Jiali, Hao Yanfang, Bai Wenbin, Zhang Jianhua, Guo Ruifeng, Liu Yong. Effects of Four Bacillus Species on Yield and Quality of Sweet Potato at Different Stages [J]. Crops, 2023, 39(1): 170-175.
[8] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[9] Liu Yajun, Wang Wenjing, Wang Honggang, Wang Qi, Hu Qiguo, Chu Fengli. Effects of Crop Rotation on Soil Microbial Community in Sweet Potato Field [J]. Crops, 2021, 37(6): 122-128.
[10] Hu Qiguo, Liu Yajun, Wang Wenjing, Wang Qi, Wang Honggang, Chu Fengli. Effects of Sweet Potato Rotation and Intercropping on the Microbial Community of Rhizosphere Soil [J]. Crops, 2021, 37(5): 153-159.
[11] Guo Qilin,Wu Haiyun,Li Huan,Liu Qing. Ecological Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus in Leaves and Stems of Different Types of Sweet Potato [J]. Crops, 2020, 36(2): 41-47.
[12] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato [J]. Crops, 2019, 35(5): 114-119.
[13] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato [J]. Crops, 2019, 35(3): 158-161.
[14] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
[15] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9" [J]. Crops, 2018, 34(4): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!