Crops ›› 2022, Vol. 38 ›› Issue (6): 208-213.doi: 10.16035/j.issn.1001-7283.2022.06.030

Previous Articles     Next Articles

Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato

Wang Heshou()   

  1. Ningde Inspection and Testing Centre for Agricultural Product Quality and Safety, Ningde 352100, Fujian, China
  • Received:2021-07-28 Revised:2021-10-14 Online:2022-12-15 Published:2022-12-21

Abstract:

In order to explore the effects of different nitrogen application rates on the nutritional quality of sweet potato leaves and provide basis for formulating scientific fertilization technology, two kinds of sweet potato varieties, Tainong 71 and Fucaishu 18 were selected, and five nitrogen levels were set up, which were 0.00 (CK), 87.50 (T1), 175.00 (T2), 262.50 (T3), and 350.00g/m2 (T4). The contents of flavonoids, soluble protein and soluble sugar in the samples were determined by liquid chromatography-mass spectrometry and visible spectrophotometer. The results showed that the content of isoquercitrin was the highest among the seven flavonoids, which reached to 74.43mg/kg in Fucaishu 18, dihydroquercetin was found in both varieties, and the contents of five other flavonoids were relatively low. There were significant negative correlations between the six detected flavonoids and the amount of N applied (P < 0.01), and there was no difference between two varieties. When the amount of N application reached 262.50g/m2 (T3), the total flavone mass of Fucaishu 18 reached the maximum, and the change of N application rate was not significant for the total flavonoids of Tainong 71 (P > 0.05). After N application, the soluble protein content of the two varieties were significantly lower than that of the treatment without N application, and there was a significant negative correlation between the soluble protein content and N application rate (P < 0.01). Soluble protein amount per unit area reached the maximum when the nitrogen application rate reached 262.50g/m2 (T3). There was a positive correlation between soluble sugar content in leaves and N application rate, but it did not reach a significant level (P > 0.05), while there was a significant negative correlation between soluble protein and soluble sugar contents (P < 0.05). The results showed that when the N application rate was 262.50g/m2, it could not only ensure the yield of leaf sweet potato, but also its health quality.

Key words: Nitrogen, Leaf vegetable sweet potato, Nutritional quality, Yield

Table 1

The content and yield of flavonoids in different test groups"

品种
Variety
处理
Treatment
芦丁
Rutin
(mg/kg)
异槲皮苷
Isoquercitrin
(mg/kg)
槲皮苷
Quercitrin
(mg/kg)
槲皮素
Quercetin
(mg/kg)
柚皮素
Naringenin
(mg/kg)
山奈酚
Kaempferol
(mg/kg)
总黄酮
Total flavone
content (mg/kg)
产量
Yield
(kg/m2)
总黄酮质量
Total flavonoids
(mg/m2)
台农71
Tainong 71
CK 11.57±1.76a 35.82±0.40b 0.29±0.02bc 1.08±0.30b 0.07±0.01a 0.26±0.04a 49.09±2.24b 0.57±0.02d 27.88±1.81c
T1 3.26±0.58b 15.89±3.27c 0.22±0.07cd 0.57±0.05cd 0.05±0.01b 0.12±0.02b 20.11±3.17d 1.49±0.16bc 29.53±3.28c
T2 2.34±0.28bc 11.51±0.59d 0.13±0.02de 0.23±0.02e 0.04±0.01c 0.06±0.01cd 14.32±0.80e 1.82±0.23b 25.96±2.93c
T3 2.03±0.33bcd 9.77±0.91d 0.12±0.02de 0.26±0.03e 0.02±0.01d 0.07±0.01cd 12.26±1.23ef 2.31±0.07a 28.40±3.28c
T4 1.67±0.03cde 8.87±0.46d 0.09±0.03e 0.23±0.02e 0.02±0.01d 0.05±0.01de 10.92±0.34f 2.40±0.07a 26.29±1.55c
福菜薯18
Fucaishu 18
CK 3.07±0.06b 74.43±0.93a 0.58±0.06a 1.40±0.04a 0.06±0.01a 0.10±0.02bc 79.64±0.76a 0.38±0.03d 30.05±2.66c
T1 1.45±0.07cdef 38.21±1.39b 0.35±0.06b 0.77±0.06c 0.05±0.01bc 0.07±0.01cd 40.89±1.18c 1.15±0.22c 46.79±8.14ab
T2 0.77±0.10def 18.19±0.44c 0.20±0.03cd 0.42±0.01de 0.02±0.01d 0.03±0.01de 19.63±0.42d 1.77±0.20b 34.88±4.31b
T3 0.60±0.07ef 16.31±2.57c 0.22±0.01cd 0.48±0.13de 0.03±0.01d 0.04±0.01de 17.67±2.09d 2.30±0.27a 40.75±7.34a
T4 0.20±0.05f 4.80±0.42f 0.14±0.07de 0.24±0.01e 0.02±0.01d 0.02±0.01e 5.42±0.39g 2.32±0.17a 12.62±1.61d

Table 2

Correlation analysis between flavonoids and nitrogen level"

指标
Index
芦丁
Rutin
异槲皮苷
Isoquercitrin
槲皮苷
Quercitrin
槲皮素
Quercetin
柚皮素
Naringenin
山奈酚
Kaempferol
氮素水平Nitrogen rate -0.62** -0.78** -0.74** -0.82** -0.88** -0.68**
芦丁Rutin 0.33 0.24 0.56** 0.72** 0.97**
异槲皮苷Isoquercitrin 0.94** 0.91** 0.70** 0.38*
槲皮苷Quercitrin 0.88** 0.64** 0.31
槲皮素Quercetin 0.80** 0.61**
柚皮素Naringenin 0.80**

Table 3

Linear regression relationship between flavonoids and nitrogen level"

自变量
Argument
项目
Item
非标准化系数
Denormalization coefficient (B)
标准系数
Standard coefficient
t 显著性
Significance
VIF R2
B 标准误差Standard error
芦丁Rutin 常量 5.46 0.82 / 6.69 0 0.38
氮素梯度 -0.02 0.00 -0.62 -4.15 0 1
异槲皮苷Isoquercitrin 常量 45.50 4.09 / 11.11 0 0.61
氮素梯度 -0.13 0.02 -0.78 -6.62 0 1
槲皮苷Quercitrin 常量 0.39 0.03 / 11.98 0 0.54
氮素梯度 -0.00 0.00 -0.74 -5.76 0 1
槲皮素Quercetin 常量 1.03 0.07 / 14.06 0 0.68
氮素梯度 -0.00 0.00 -0.82 -7.73 0 1
柚皮素Naringenin 常量 0.06 0.00 / 20.18 0 0.78
氮素梯度 -0.00 0.00 -0.88 -9.86 0 1
山奈酚Kaempferol 常量 0.15 0.02 / 9.17 0 0.47
氮素梯度 -0.00 0.00 -0.68 -4.97 0 1

Table 4

Content and unit mass of soluble protein and soluble sugar in different test groups"

品种
Variety
处理
Treatment
可溶性蛋白含量
Soluble protein content (mg/g)
可溶性糖含量
Soluble sugar content (mg/g)
可溶性蛋白质量
Total soluble protein (g/m2)
可溶性糖质量
Total soluble sugar (g/m2)
台农71
Tainong 71
CK 108.16±13.55b 9.22±1.14c 61.71±9.95e 5.25±0.78d
T1 71.22±0.77c 13.10±1.89bc 105.76±9.91cd 21.91±3.09bc
T2 75.20±10.76c 14.71±0.93b 138.84±34.25abc 24.16±6.31abc
T3 71.05±1.70c 13.78±3.62b 164.48±8.75a 25.01±6.31abc
T4 63.99±1.50c 10.83±1.97bc 153.78±4.09ab 32.92±7.73a
福菜薯18
Fucaishu 18
CK 125.71±11.21a 10.76±1.62bc 47.49±6.13e 4.05±0.84d
T1 71.59±3.65c 13.96±2.23b 81.46±12.21de 15.53±0.38c
T2 67.97±6.82c 19.42±1.71a 119.80±10.53bc 34.80±7.02a
T3 70.03±5.21c 12.35±1.57bc 161.10±21.41a 28.34±4.55ab
T4 67.53±6.56c 11.22±0.98bc 157.56±26.02ab 26.18±4.13abc

Table 5

Correlation analysis between soluble protein, soluble sugar and nitrogen level"

指标
Index
可溶性蛋白
Soluble protein
可溶性糖
Soluble sugar
氮素水平Nitrogen rate -0.70** 0.10
可溶性蛋白Soluble protein -0.39*

Table 6

Linear regression relationship between soluble protein and nitrogen level and soluble sugar"

项目
Item
非标准化系数Denormalization coefficient (B) 标准系数
Standard coefficient
t 显著性
Significance
VIF R2
B 标准误差Standard error
常量Constant 124.98 10.62 / 11.77 0.00 / 0.59
氮素梯度Nitrogen rate -0.11 0.02 -0.67 -5.41 0.00 1.01
可溶性糖Soluble sugar -2.01 0.78 -0.32 -2.60 0.02 1.01
[1] 欧行奇, 任秀娟, 周岩. 叶菜型甘薯茎尖的氨基酸含量及组成分析. 中国食品学报, 2007, 7(4):120-125.
[2] 许丽丽, 赵嘉玟. 三种菜用型甘薯茎尖的营养成分分析. 湖北农业科学, 2010, 49(2):300-302.
[3] Almazan A M, Begum F, Johnson C. Nutritional quality of sweetpotato greens from greenhouse plants. Journal of Food Composition and Analysis, 1997, 10(3):246-253.
doi: 10.1006/jfca.1997.0538
[4] 徐梦瑶, 赵祥颖, 张立鹤. 甘薯的营养价值及保健作用. 中国果菜, 2017, 37(5):17-21,47.
[5] 孔秀林, 张文婷, 孙健, 等. 甘薯叶片中多酚类物质的提取及抗氧化活性研究. 江苏师范大学学报(自然科学版), 2018, 36(2):34-37,41.
[6] Truong V D, Mcfeeters R F, Thompson R T, et al. Phenolic acid content and composition in leaves and roots of common commercial sweetpotato (Ipomea batatas L.) cultivars in the United States. Journal of Food Science, 2007, 72(6):343-349.
pmid: 17995676
[7] 李鑫. 甘薯叶中主要多酚成份及其抗氧化性研究. 长沙: 湖南农业大学, 2009.
[8] 李佳银, 于欢, 石伯阳, 等. 甘薯茎叶中异槲皮苷及咖啡酰基奎宁酸类衍生物的抗氧化活性. 食品科学, 2013, 34(7):111-114.
[9] 曹翠玲. 氮素及形态对作物的生理效应. 杨凌: 西北农林科技大学, 2002.
[10] 徐丹丹. 施氮对青钱柳生长和黄酮类化合物积累的影响. 合肥: 安徽农业大学, 2018.
[11] 胡彦. 氮素水平对鸡骨草生长发育及其药用有效成分的影响. 南宁: 广西大学, 2006.
[12] Kovacik J, Gruz J, Klejdus B, et al. Accumulation of metals and selected nutritional parameters in the field-grown chamomile anthodia. Food Chemistry, 2012, 131(1):55-62.
doi: 10.1016/j.foodchem.2011.08.028
[13] Strissel T, Halbwirth H, Hoyer U, et al. Growth-promoting nitrogen nutrition affects flavonoid biosynthesis in young apple (Malus domestica Borkh.) leaves. Plant Biology, 2005, 7(6):677-685.
[14] 刘娜, 闫志山, 范有君, 等. 不同氮素水平对甜菜氮代谢酶和可溶性蛋白含量的影响. 中国农学通报, 2015, 31(30):149-154.
[15] 任丽花, 余华, 蔡南通, 等. 不同氮素水平对菜用甘薯叶片生理特性的影响. 中国园艺文摘, 2011, 27(6):3-5.
[16] 王金刚, 姜艳, 田甜, 等. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响. 棉花学报, 2021, 33(3):209-223.
[17] 吴雅薇, 李强, 豆攀, 等. 低氮胁迫对不同耐低氮玉米品种苗期伤流液性状及根系活力的影响. 植物营养与肥料学报, 2017, 23(2):278-288.
[18] 关佳莉, 王刚, 张梦蕊, 等. 不同氮素供应水平对菘蓝生长及药材质量的影响. 核农学报, 2019, 33(10):2077-2085.
doi: 10.11869/j.issn.100-8551.2019.10.2077
[19] 姜丽丽, 王梓全, 史雪研, 等. 不同施氮量对菘蓝产量及品质的影响. 北方园艺, 2020(24):107-112.
[1] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[2] Wen Rui, Chen Qianwu, Zhao Yajie, Jia Yiming, Lu Xudong, Zhang Jihong, Li Huanchun, Zhao Peiyi, Zhang Yonghu. Study on Water Temperature Effects and Water Use Efficiency of Paddy Field under Different Plastic Film Mulching Planting Patterns in Arid Area of Loess Plateau in Northwest China [J]. Crops, 2022, 38(6): 111-117.
[3] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[4] Wang Xueru, Chen Haifei, Zhang Zhenhua. Physiological Mechanism of Nitrate Mitigation of Ammonium Toxicity in Rape [J]. Crops, 2022, 38(6): 124-131.
[5] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[6] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[7] Qin Meng, Cui Shize, He Xiaodong, Zhai Lingxia, Tao Bo, Wang Zhaojun, Zhao Haicheng, Li Hongyu, Zheng Guiping, Liu Lihua. Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients [J]. Crops, 2022, 38(6): 159-166.
[8] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[9] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[10] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[11] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[12] Chong Haotian, Shang Cheng, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Application on Spikelet Formation of Different Types of Rice Varieties [J]. Crops, 2022, 38(6): 226-233.
[13] Shi Guanyan, Wang Juanfei, Ma Huifang, Zhao Xiongwei. Correlation and Regression Analysis between Yield and Main Agronomic Traits in Foxtail Millet Hybrids [J]. Crops, 2022, 38(6): 82-87.
[14] Zhao Bin, Ji Changhao, Sun Hao, Zhu Bin, Wang Rui, Chen Xiaodong. Comprehensive Assessment of the Yield and Quality of Forage and Grain among Multi-Rowed Barley Lines [J]. Crops, 2022, 38(6): 93-97.
[15] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!