Crops ›› 2021, Vol. 37 ›› Issue (5): 153-159.doi: 10.16035/j.issn.1001-7283.2021.05.023

Previous Articles     Next Articles

Effects of Sweet Potato Rotation and Intercropping on the Microbial Community of Rhizosphere Soil

Hu Qiguo(), Liu Yajun(), Wang Wenjing, Wang Qi, Wang Honggang, Chu Fengli   

  1. Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan, China
  • Received:2020-12-14 Revised:2021-06-16 Online:2021-10-15 Published:2021-10-14
  • Contact: Liu Yajun E-mail:huqiguo1234@126.com;liuyajun0812@163.com

Abstract:

To reveal the response mechanism of soil microbial community in different planting systems of sweet potato, the effects of rotation and intercropping on microbial community structure and carbon source utilization capacity of sweet potato rhizosphere soil were studied by using phospholipid fatty acid (PLFA) and ecological board (BIOLOG ECO) through field positioning experiments. In this study, three treatments were sweet potato continuous cropping, sweet potato-wheat rotation, and sweet potato-corn intercropping. The main results were as follow: compared with the sweet potato continuous cropping treatment, sweet potato rotation and intercropping changed the PLFA biomass of soil microorganisms; the contents of bacteria increased by 21.82% and 38.77%, respectively (P<0.05); the contents of actinomycetes increased by 6.98% and 12.77%, and the biomass of Gram-positive bacteria increased by 28.60% and 63.44%, respectively; the biomass of Gram-negative bacteria increased by 18.21% and 22.29%, and the fungal contents decreased by 16.60% and 13.03%, respectively. With the extension of culture time, the average well color development (AWCD value) of sweet potato-corn intercropping was significantly higher than the other two treatments. The utilization capacity of carboxylic acid compounds, polymers, carbohydrates, amino acids, and amines of the sweet potato-corn intercropping treatment was significantly increased by 17.28%, 14.67%, 54.17%, 36.62%, and 20.00%, respectively, compared with the sweet potato continuous cropping treatment. The result of the multivariate analysis (RDA) showed that the changes of soil microbial community structure and functional diversity were controlled by many factors, the soil available potassium and total nitrogen were the main driving factors. However, sweet potato-wheat rotation and sweet potato-corn intercropping could optimize the soil microbial community structure and enhance the microbial functional diversity, the effect of sweet potato-corn intercropping treatment was better.

Key words: Sweet potato, Rotation, Intercropping, Microbial community

Fig.1

The marker analysis of main PLFA in soil microbial community under the different planting patterns of sweet potato Different lowercase letters indicate significant difference (P<0.05)"

Table 1

PLFA content of soil microbial community under the different planting patterns of sweet potato"

处理
Treatment
真菌
Fungal (nmol/g)
细菌
Bacterial (nmol/g)
放线菌
Act (nmol/g)
真菌/细菌
F/B
革兰氏阳性菌
G+ (nmol/g)
革兰氏阴性菌
G- (nmol/g)
G+/G-
S-S 7.83±0.39a 11.09±0.75c 6.59±0.88c 0.71±0.01a 4.65±0.74c 6.37±1.49b 0.79±0.11b
S-W 6.53±0.72c 13.51±1.38b 7.05±1.10b 0.49±0.10b 5.98±0.91b 7.53±2.29a 0.80±0.13ab
S-C 6.81±0.79b 15.39±0.95a 7.42±0.33a 0.44±0.02c 7.60±0.84a 7.79±1.63a 0.98±0.08a

Fig.2

The AWCD value of soil microbial community under the different planting patterns of sweet potato"

Table 2

The carbon source utilization capacity of soil microbial community under the different planting patterns of sweet potato"

处理
Treatment
羧酸类化合物
Carbox
多聚化合物
Pol
碳水化合物
Carbon
芳香化合物
Phe
氨基酸化合物
Amino
胺类化合物
Amine
S-S 0.81±0.05b 0.75±0.04b 0.72±0.03c 0.70±0.05a 0.71±0.02c 0.55±0.04b
S-W 0.76±0.11c 0.71±0.03b 1.00±0.08b 0.67±0.07ab 0.80±0.09b 0.62±0.06a
S-C 0.95±0.05a 0.86±0.05a 1.11±0.06a 0.63±0.06b 0.97±0.12a 0.66±0.11a

Fig.3

Principal component analysis of soil microbial community structure, carbon source utilization capacity with soil environmental factors The AP, AK, AN, TN, TP, OM and pH represent the soil available phosphorus, available potassium, alkali hydrolyzable nitrogen, total nitrogen, total phosphorus, organic matter and pH value respectively; The bacterial, Act, fungal, G+, G- represent the soil bacteria, act, fungi, Gram-positive bacteria, Gram-negative bacteria, respectively; The carboh, pol, carbox, phe, amino, amine represent the carbohydrates, polymers, carboxylic acids, aromatic compounds, amino acids, amines; the SS1-SS4, SW1-SW4, and SC1-SC4 represent four repeats of sweet potato continuous cropping, sweet potato-wheat rotation, and sweet potato-corn intercropping, respectively"

[1] 刘亚军, 胡启国, 储凤丽, 等. 不同栽培模式对甘薯干物质分配及产量的影响. 黑龙江八一农垦大学学报, 2018, 30(6):1-7,18.
[2] 吴燕, 颜朗, 李雪丹, 等. 甘薯耐旱和耐盐基因的挖掘和表达分析. 四川大学学报(自然科学版), 2016, 53(5):1147-1154.
[3] 高志远, 胡亚亚, 刘兰服, 等. 甘薯连作对根际土壤微生物群落结构的影响. 核农学报, 2019, 33(6):1248-1255.
[4] 马代夫, 李强, 曹清河, 等. 中国甘薯产业及产业技术的发展与展望. 江苏农业学报, 2012, 28(5):969-973.
[5] 张树生, 杨兴明, 茆泽圣, 等. 连作土灭菌对黄瓜(Cucumis sativus)生长和土壤微生物区系的影响. 生态学报, 2007, 27(5):1809-1817.
[6] 李晶晶, 李煊桢, 李振方, 等. 不同种植土壤对地黄生长和酶活性及其根际土壤微生态的影响. 植物资源与环境学报, 2015, 24(1):42-47.
[7] 王灿, 李志刚, 杨建峰, 等. 胡椒连作对土壤微生物群落功能多样性与群落结构的影响. 热带作物学报, 2017, 38(7):1235-1242.
[8] Kumar A, Padhy S R J, Das R R, et al. Elucidating relationship between nitrous oxide emission and functional soil microbes from tropical lowland rice soil exposed to elevated CO2:A path modelling approach. Agriculture, Ecosystems and Environment, 2021, 308:107268.
doi: 10.1016/j.agee.2020.107268
[9] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3):298-310.
doi: 10.3724/SP.J.1258.2014.00027
[10] Li C P, Shi W C, Wu D, et al. Biocontrol of potato common scab by Brevibacillus laterosporus BL12 is related to the reduction of pathogen and changes in soil bacterial community. Biological Control, 2021, 153:104496.
doi: 10.1016/j.biocontrol.2020.104496
[11] 商丽丽, 杜清福, 韩俊杰, 等. 甘薯重茬对土壤微生物的影响及重茬障碍防治措施研究. 作物杂志, 2015(4):126-129.
[12] 谭雪莲. 轮作模式下马铃薯土壤微生物多样性、酶活性及根系分泌物的研究. 兰州:甘肃农业大学, 2016.
[13] 宋佳承. 轮作及连作对马铃薯生长发育及根际微环境的影响. 兰州:甘肃农业大学, 2020.
[14] 金莉. 不同蔬菜轮作对温室番茄连作基质微生物多样性及番茄生长的影响. 兰州:甘肃农业大学, 2020.
[15] 姚小东, 李孝刚, 丁昌峰, 等. 连作和轮作模式下花生土壤微生物群落不同微域分布特征. 土壤学报, 2019, 56(4):975-985.
[16] Timothy S, Prather W, Thomas L, et al. Interplanting grasses into alfalfa controls weeds in older stands. California Agriculture, 2000, 54(6):37-41.
doi: 10.3733/ca.v054n06p37
[17] 赵军. 苏南地区稻麦轮作系统的高产土壤微生物区系培育与调控研究. 南京:南京农业大学, 2016.
[18] 孙倩. 轮作模式对谷茬地作物根际土壤特性及微生物群落多样性的影响. 银川:宁夏大学, 2019.
[19] 王劲松, 樊芳芳, 郭珺, 等. 不同作物轮作对连作高粱生长及其根际土壤环境的影响. 应用生态学报, 2016, 27(7):2283-2291.
[20] 刘贤文, 郭华春. 马铃薯与玉米复合种植对土壤化感物质及土壤细菌群落结构的影响. 中国生态农业学报(中英文), 2020, 28(6):794-802.
[21] 严君, 韩晓增, 陈旭, 等. 施肥对小麦、玉米和大豆连作土壤微生物群落功能多样性的影响. 干旱地区农业研究, 2019, 37(6):171-177.
[22] 孙小花, 胡新元, 陆立银, 等. 黄土高原马铃薯不同连作年限土壤理化性质及微生物特性. 干旱地区农业研究, 2019, 37(4):184-192.
[23] 刘亚军. 马铃薯不同间作模式对作物与土壤的影响. 银川:宁夏大学, 2017.
[24] Massaccesi L, Benucci G M N, Gigliotti G, et al. Rhizosphere effect of three plant species of environment under periglacial conditions (Majella Massif,central Italy). Soil Biology and Biochemistry, 2015, 89:184-195.
doi: 10.1016/j.soilbio.2015.07.010
[25] 张秋芳, 刘波, 林营志, 等. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性. 生态学报, 2009, 29(8):4127-4137.
[26] Campbell C D, Grayston S J, Hirst D J. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods, 1997, 30(1):33-41.
doi: 10.1016/S0167-7012(97)00041-9
[27] 王光州. 土壤微生物调节植物种间互作和多样性―生产力关系的机制. 北京:中国农业大学, 2018.
[28] 徐海强, 黄洁, 刘子凡, 等. 木薯/花生间作对其根际土壤微生物数量、群落结构及多样性的影响. 南方农业学报, 2016, 47(2):185-190.
[29] Hao W Y, Ren L X, Ran W, et al. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum. Plant and Soil, 2010, 336:485-497.
doi: 10.1007/s11104-010-0505-0
[30] Li P, Ma L, Feng Y L, et al. Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana. Journal of Industrial Microbiology, 2012, 39:1495-1505.
[31] 黄玉茜, 韩晓日, 杨劲峰, 等. 花生根系分泌物对土壤微生物学特性及群落功能多样性的影响. 沈阳农业大学学报, 2015, 46(1):48-54.
[32] 杨智仙, 汤利, 郑毅, 等. 不同品种小麦与蚕豆间作对蚕豆枯萎病发生、根系分泌物和根际微生物群落功能多样性的影响. 植物营养与肥料学报, 2014, 20(3):570-579.
[33] 董宇飞, 吕相漳, 张自坤, 等. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响. 浙江农业学报, 2019, 31(9):1485-1492.
[34] 唐艳芬, 续勇波, 郑毅, 等. 小麦蚕豆间作对根际土壤氮转化微生物的影响. 农业资源与环境学报, 2016, 33(5):482-490.
[35] Gao Z, Han M, Hu Y, et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Frontiers in Microbiology, 2019, 10:2269.
doi: 10.3389/fmicb.2019.02269
[36] Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57:233-266.
doi: 10.1146/arplant.2006.57.issue-1
[37] 刘亚军, 马琨, 李越, 等. 马铃薯间作栽培对土壤微生物群落结构与功能的影响. 核农学报, 2018, 32(6):1186-1194.
[38] 许建晶. 陇中黄土高原坡耕地土壤碳组分和微生物功能多样性对间作体系的响应. 兰州:甘肃农业大学, 2018.
[1] Wu Xinyu, Liu Zhenyang, Li Haiye, Zheng Yi, Tang Li, Xiao Jingxiu. Effects of Nitrogen Application and Intercropping on Nodule Formation and Nitrogen Uptake and Accumulation in Faba Bean [J]. Crops, 2021, 37(5): 120-127.
[2] Tang Hongqin, Li Zhongyi, Dong Wenbin, Wei Caihui, He Tieguang, Meng Yancheng, Tang Hailing, Mo Yongcheng. Effects of Different Intercropping Modes of Green Manure Replacing Chemical Fertilizer on Cassava (Manihot esculenta Crantz) Traits and Yield [J]. Crops, 2021, 37(4): 184-190.
[3] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[4] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[5] Xie Jinlan, Lin Li, Li Changning, Luo Ting, Mo Zhanghong. Effects of Intercropping Mungbean Straw Returning on Sugarcane Growth and Nitrogen Metabolism under Nitrogen Fertilizer Reduction [J]. Crops, 2020, 36(4): 164-169.
[6] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[7] Guo Qilin,Wu Haiyun,Li Huan,Liu Qing. Ecological Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus in Leaves and Stems of Different Types of Sweet Potato [J]. Crops, 2020, 36(2): 41-47.
[8] Gu Kejun,Gu Dongxiang,Zhang Simei,Zhang Chuanhui,Zhang Henggan,Wu Jingjing,Fan Pingsheng. Short-Term Effects of Tillage and Organic Fertilizer Application on Soil Characters and Annual Rice-Wheat Yield in Coastal Low- and Medium-Yield Farmland of the Old Yellow River [J]. Crops, 2020, 36(1): 76-80.
[9] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato [J]. Crops, 2019, 35(5): 114-119.
[10] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain [J]. Crops, 2019, 35(5): 143-150.
[11] Zhang Haibin,Meng Meilian,Liu Kunyu,Zhang Lingxiang,Chen Youjun. Effects of Different Rotation Patterns on Dry Matter Accumulation, Disease Occurrence and Yield of Potato [J]. Crops, 2019, 35(4): 170-175.
[12] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato [J]. Crops, 2019, 35(3): 158-161.
[13] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[14] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
[15] Yu Bai,Xueying Han,Haiyang Dong,Sudu Wuyun,Bingzhen Li,Guilin Chen. Effects of Rotation and Agronomic Measures on Reducing the Damage of Orobanche cumana [J]. Crops, 2019, 35(2): 192-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!