Crops ›› 2021, Vol. 37 ›› Issue (3): 195-201.doi: 10.16035/j.issn.1001-7283.2021.03.030

Previous Articles     Next Articles

Effects of Topping at Different Nodes at Seedling Stage on Root Growth and Yield of High-Yield Spring Soybean

Chu Guanghong(), Zhang Jianxin(), Wang Cong, Zhao Zhanying   

  1. College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2020-06-20 Revised:2020-07-11 Online:2021-06-15 Published:2021-06-22
  • Contact: Zhang Jianxin E-mail:tarucgh@sohu.com;zjxin401@126.com

Abstract:

To reveal the effects of topping at the seedling stage on root growth and yield of high-yield spring soybean, the cotyledon node topping (SP1), true leaf node topping (TP1), and compound leaf node topping (CP1) under the condition of film mulching and compound leaf node topping (CP2) under the condition of non-mulching were studied. In addition, CK1 and CK2 were used as control. The spatial and temporal distribution characteristics and yield components of root morphology and root activity after topping were systematically studied. The main results were as follows: the total lateral root dry weight and the root activity of different treatments were significantly increased, and the root increment of compound leaf node topping treatment was higher than the other two treatments, film mulching treatments were higher than non-mulching, and root increment of 0-20cm was higher than the root increment of 20-40cm. The maximum total lateral root dry weight, total lateral root length, and total lateral root surface area treated with CP1 (CP2) on the 60th day after topping were increased by 57.48% (17.95%), 54.03% (10.57%), and 55.43% (11.22%). The root activity of 0-20cm (20-40cm) increased by 29.28% (31.65%) and 24.01% (9.50%), respectively. Population pods and population seeds of CP1 were increased by 22.05% and 18.52%, compared to CK1. CP2 decreased by 1.71% and 4.61%, respectively, compared with CK2 (P > 0.05). The 100-seed weight and grain yield of CP1 (CP2) were increased by 4.88% (9.01%) and 21.00% (3.98%), respectively. Therefore, it is believed that the topping of compound leaf nodes could significantly promote root growth, the number of pods per plant, 100-seed weight, and grain yield of high-yield spring soybean, and also can provide a theoretical basis for soybean breeding for high-yield and post-hail disaster management.

Key words: High-yield spring soybean, Topping at seedling stage, Root system, Yield composition

Fig.1

Processing methods of topping at seedling stage of soybean CK: control; CP: topping at the compound leaf stage; TP: topping at the first true leaf stage; SP: topping at the cotyledon stage"

Fig.2

Effects of topping at seedling stage on total lateral root dry weight and lateral root dry weight density Different lowercase letters indicate significant difference at 0.05 level, the same below"

Fig.3

Effects of topping at seedling stage on total lateral root length and lateral root length density"

Fig.4

Effects of topping at seedling stage on total lateral root surface-area and lateral root surface-area density"

Fig.5

Effects of topping at seedling stage on root activity"

Table 1

Yield and yield components"

处理Treatment 株数
Plant number
(×104 plant/hm2)
茎数
Stem number
(×104 stem/hm2)
单株荚数
Pods of
per plant
群体荚数(个/m2)
Population pods (number/m2)
单株粒数
seeds of
per plant
群体粒数(个/m2)
Population seeds (number/m2)
百粒重
100-seed weight (g)
产量
Yield (kg/hm2)
CK1 26.46a 27.15c 25.12c 664.71d 78.24b 2070.10b 16.41b 3373.64c
SP1 26.56a 44.93b 27.03b 717.94c 73.34c 1948.09c 15.91b 2960.59d
TP1 25.56a 56.46a 29.91b 764.36b 81.09b 2072.30b 17.64a 3704.85b
CP1 25.70a 58.46a 35.92a 922.94a 95.49a 2453.56a 17.21a 4082.25a
CK2 24.52a 24.52b 27.80a 681.49a 76.67a 1879.57a 15.10b 2838.30a
CP2 25.07a 50.06a 26.72a 669.86a 71.52a 1792.98a 16.46a 2951.40a
[1] 李海燕, 武小霞, 刘淼 , 等. 大豆子叶节、胚尖再生植株的研究. 大豆科学, 2007(5):709-712.
[2] 任宗春, 魏宁, 张艳红 , 等. 大豆苗期摘心对产量及相关性状的影响. 湖北农业科学, 2011,50(6):1108-1110.
[3] 李海燕 . 大豆摘心试验总结. 新农业, 2016(23):28-30.
[4] 乔海涛, 刘学, 高林 . 大豆分枝与产量、农艺性状的相关性及灰色关联度分析. 辽宁农业科学, 2016(1):36-40.
[5] 覃思思, 刘卫国, 程彬 , 等. 套作大豆耐荫品种筛选及农艺性状与产量的关系研究. 中国油料作物学报, 2020,42(3):390-400.
[6] 张霞, 谭冰, 郭勇 , 等. 大豆品种分枝数分级标准探索. 植物遗传资源学报, 2018,19(3):510-516.
[7] 史宏 . 不同生态类型大豆农艺性状与产量关系的研究. 华北农学报, 2018,33(1):150-159.
[8] Liedgens M, Soldati A, Stamp P , et al. Root development of maize (Zea mays L.) as observed with minirhizotrons in lysimeters. Crop Science, 2000,40(6):1665-1672.
doi: 10.2135/cropsci2000.4061665x
[9] 杨秀红, 吴宗璞, 张国栋 . 大豆品种根系性状与地上部性状的相关性研究. 作物学报, 2002,28(1):72-75.
[10] 梁泉, 尹元萍, 严小龙 , 等. 不同磷水平下大豆根系性状的遗传特性分析. 分子植物育种, 2009,7(2):321-329.
[11] 张伟, 邱强, 赵婧 , 等. 杂交大豆根系形态生理特性与产量的关系. 大豆科学, 2014,33(3):347-352.
[12] 陈晓远, 高志红, 罗远培 . 植物根冠关系. 植物生理学通讯, 2005,41(5):6-13.
[13] 李思忠, 章建新 . 春大豆根系生长与花荚形成的关系研究. 干旱地区农业研究, 2016,34(5):91-97.
[14] 董钻, 于兵, 刘兴仁 . 大豆生育前期摘心效果的研究. 辽宁农业科学, 1985(4):52-53.
[15] 宋书宏, 苏黎, 蔺瑞明 , 等. 生育前期摘心对大豆生长和产量的影响. 辽宁农业科学, 1998(6):47-48.
[16] 卢思慧, 王茹芳, 刘秀英 . 夏大豆苗期摘心诱导双茎栽培研究初报Ⅰ.不同叶位摘心诱导双茎栽培试验分析. 河北农业技术师范学院学报, 1995(3):74-76.
[17] 万晓菊, 张国强, 王克如 , 等. 北疆春玉米覆膜、滴灌技术效应研究. 作物杂志, 2019(4):107-112.
[18] 王洪博, 曹辉, 高阳 , 等. 南疆无膜滴灌棉花灌溉制度对土壤水分和产量品质的影响. 灌溉排水学报, 2020,39(5):26-34.
[19] 张旺锋, 王振林, 余松烈 , 等. 膜下滴灌对新疆高产棉花群体光合作用冠层结构和产量形成的影响. 中国农业科学, 2002(6):632-637.
[20] Wang C, Zhang Y, Wang J , et al. Plastic film mulching with drip irrigation promotes maize (Zea mays L.) yield and water-use efficiency by improving photosynthetic characteristics. Archives of Agronomy and Soil Science, 2020,67(2):191-204.
doi: 10.1080/03650340.2020.1718662
[21] 曾芳荣, 殷文, 张小红 . 不同覆膜方式对旱地大豆农田土壤水热特征及产量的影响. 西北农业学报, 2017,26(7):1090-1098.
[22] 周德录, 刘广才, 李城德 , 等. 覆膜方式对不同生态区大豆产量和水分利用效率的影响. 灌溉排水学报, 2019,38(3):22-27.
[23] 战勇, 曾凯, 赵靓 , 等. 新疆春大豆膜下滴灌公顷6200kg超高产栽培模式. 中国作物学会大豆专业委员会. 第十届全国大豆学术讨论会论文摘要集, 2017: 127.
[24] 金剑, 王光华, 刘晓冰 , 等. 东北黑土区高产大豆R5期根系分布特征. 中国油料作物学报, 2007(3):266-271.
[25] 孙广玉, 张荣华, 黄忠文 . 大豆根系在土层中分布特点的研究. 中国油料作物学报, 2002(1):46-48.
[26] 王庆仁, 李继云, 李振声 . 高效利用土壤磷素的植物营养学研究. 生态学报, 1999(3):129-133.
[27] Gahoonia T, Nielsen N . Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant and Soil, 2004,262:55-62.
doi: 10.1023/B:PLSO.0000037020.58002.ac
[28] 孙卓韬, 董钻 . 大豆株型、群体结构与产量关系的研究(第二报)大豆群体冠层的荚粒分布. 大豆科学, 1986(2):91-102.
[29] 杨恒山, 张玉芹, 徐寿军 , 等. 超高产春玉米干物质及养分积累与转运特征. 植物营养与肥料学报, 2012,18(2):315-323.
[30] 卢思慧, 曹金锋, 高广居 , 等. 夏大豆双茎高产栽培技术研究. 河北农业科学, 2005(1):65-68.
[31] 晁毛妮, 郝德荣, 印志同 , 等. 大豆生物量与产量组分间的相关及关联分析. 作物学报, 2014,40(1):7-16.
[32] Kumudini S, Hume D J, Chu G . Genetic improvement in short-season soybeans. Crop Science, 2002,41(1):141-145.
[33] 邢永锋, 章建新, 赵翠霞 , 等. 覆膜对不同熟期大豆品种根系生长的影响. 新疆农业大学学报, 2009,32(5):51-55.
[1] Zhang Shaoyun,Li Xiangling,Liu Pan,Zhang Yue,Zhai Dashuai,Yin Baozhong. Effects of Soil Tillage and Fertilization on Root Microstructure and Yield in Maize [J]. Crops, 2018, 34(6): 144-148.
[2] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures [J]. Crops, 2018, 34(4): 161-166.
[3] Juan Zhong,Zhiqiang Fu,Li Liu,Zhijuan Zhu,Huabin Zheng. Correlation Analysis of Methane Transport Capacity and Root Characteristics in Rice [J]. Crops, 2017, 33(4): 105-112.
[4] Jiao Wang,Yongqing Zhang. Observation on Growth Pattern of Root System in Different Adzuki Bean Varieties under Drought Stress [J]. Crops, 2016, 32(6): 112-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!