Crops ›› 2017, Vol. 33 ›› Issue (4): 105-112.doi: 10.16035/j.issn.1001-7283.2017.04.018

Previous Articles     Next Articles

Correlation Analysis of Methane Transport Capacity and Root Characteristics in Rice

Zhong Juan,Fu Zhiqiang,Liu Li,Zhu Zhijuan,Zheng Huabin   

  1. Agronomy College,Hunan Agricultural University/Collaborative Innovation Center for Modern Production of Multiple Cropping System Paddy Area,Changsha 410128,Hunan,China
  • Received:2017-04-11 Revised:2017-06-23 Online:2017-08-15 Published:2018-08-26
  • Contact: Zhiqiang Fu

Abstract:

In order to investigate the key root characteristics affecting rice plant methane transport, the rice root parameters of different rice cultivars were studied in relation to the methane transport capacity under the condition of hydroponic conditions. The results showed that there were significant positive correlations between the root specific surface area, root active absorption area and the methane transport capacity in early rice. There was a significant positive correlation between early rice root vitality and methane transport capacity. The root index which had negative correlation with methane transport capacity included root weight, the longest root length. Therefore, early rice plants with low root vigor and relatively high root weight may have weak methane transport capacity.

Key words: Rice, Methane transport, Root system index, Correlation

Table 1

All of the early and late rice varieties"

类别Sort 品种Varieties
杂交早稻Hybrid early rice 陆两优171 Luliangyou 171
潭原优4903 Tanyuanyou 4903
株两优17 Zhuliangyou 17
陆两优996 Luliangyou 996
株两优819 Zhuliangyou 819
金优268 Jinyou 268
株两优189 Zhuliangyou 189
两优早17 Liangyouzao 17
长两优35 Changliangyou 35
株两优19 Zhuliangyou 19
陆两优4026 Luliangyou 4026
常规早稻Conventional early rice 湘早籼45 Xiangzaoxian 45
中早39 Zhongzao 39
中嘉早17 Zhongjiazao 17
湘早籼32 Xiangzaoxian 32
湘早籼6 Xiangzaoxian 6
湘早籼24 Xiangzaoxian 24
杂交晚稻Hybrid late rice 准两优608 Zhunliangyou 608
深优9586 Shenyou 9586
凤两优丝苗Fengliangyousimiao
丰优800 Fengyou 800
C两优7号C liangyou 7
资优299 Ziyou 299
玖两优644 Jiuliangyou 644
T优15 T you 15
丰源优299 Fengyuanyou 299
常规晚稻Conventional late rice 湘晚籼13 Xiangwanxian 13
玉珍香Yuzhenxiang
湘晚籼17 Xiangwanxian 17

Fig.1

Training-measuring gas one box of rice"

Fig.2

A schematic diagram of methane gas measurement in a sealed box"

Fig.3

Changes of methane transfer rate of different conventional early rice at different stages"

Fig.4

Changes of methane transfer rate of different hybrid early rice at different stages"

Fig.5

Changes of methane transfer rate of different conventional late rice at different stages"

Fig.6

Changes of methane transfer rate of different hybrid late rice at different stages"

Table 2

Average methane transport rate of different varieties during the whole growth period"

类别
Sort
品种
Varieties
甲烷传输速率
Methane transport
rate [mmol/(m2·s)]
类别
Sort
品种
Varieties
甲烷传输速率
Methane transport
rate [mmol/(m2·s)]
杂交早稻 陆两优171 Luliangyou 171 0.670bB 杂交晚稻 准两优608 Zhunliangyou 608 0.069eE
Hybrid early rice 潭原优4903 Tanyuanyou 4903 0.154efgEFG Hybrid late rice 深优9586 Shenyou 9586 0.131eCDE
株两优17 Zhuliangyou 17 0.127fgFG 凤两优丝苗Fengliangyousimiao 0.332cdBC
陆两优996 Luliangyou 996 0.243cdefgEFG 丰优800 Fengyou 800 0.631aA
株两优819 Zhuliangyou 819 0.360cCDE C两优7号C liangyou 7 0.372cdB
金优268 Jinyou 268 0.564bBCD 资优299 Ziyou 299 0.127eDE
株两优189 Zhuliangyou 189 0.236cdefgEFG 玖两优644 Jiuliangyou 644 0.107eDE
两优早17 Liangyouzao 17 0.134fgEFG T优15 T you 15 0.068eE
长两优35 Changliangyou 35 0.117gG 丰源优299 Fengyuanyou 299 0.054eE
株两优19 Zhuliangyou 19 0.586bBC 常规晚稻 湘晚籼13 Xiangwanxian 13 0.062eE
陆两优4026 Luliangyou 4026 0.297cdefEFG Conventional late rice 玉珍香Yuzhenxiang 0.025eE
常规早稻 湘早籼45 Xiangzaoxian 45 1.121aA 湘晚籼17 Xiangwanxian 17 0.108eDE
Conventional early rice 中早39 Zhongzao 39 0.103gG
中嘉早17 Zhongjiazao 17 0.143fgEFG
湘早籼32 Xiangzaoxian 32 0.351cdDEF
湘早籼6 Xiangzaoxian 6 0.146fgEFG
湘早籼24 Xiangzaoxian 24 0.240cdefgEFG

Table 3

Analysis on the correlation between root index and methane transport rate in early rice"

根系指标Root index CH4TR Fe3+-PS SSA AAA AAAP RP LRL ROA RW
Fe3+-PS -0.094ns
SSA -0.486** -0.395**
AAA -0.320* -0.027ns -0.321*
AAAP -0.014ns -0.235ns -0.109ns -0.461**
RP -0.132ns -0.497** -0.627** -0.346** -0.456**
LRL -0.280* -0.143ns -0.325** -0.210ns -0.063ns -0.175ns
ROA -0.038ns -0.500** -0.118ns -0.326** -0.778** -0.314* -0.207ns
RW -0.405** -0.289* -0.530** -0.783** -0.296* -0.548** -0.216ns -0.122ns
TAA -0.124ns -0.687** -0.382** -0.754** -0.857** -0.334** -0.364** -0.196ns -0.344**

Table 4

Analysis on the correlation between root index and methane transport rate in late rice"

根系指标Root index CH4TR Fe3+-PS SSA AAA AAAP RP LRL ROA RW
Fe3+-PS -0.496**
SSA -0.342** -0.033ns
AAA -0.420** -0.543** -0.264*
AAAP -0.058ns -0.407** -0.114ns -0.072ns
RP -0.033ns -0.214ns -0.561** -0.553** -0.033ns
LRL -0.004ns -0.165ns -0.573** -0.060ns -0.040ns -0.448**
ROA -0.038ns -0.199ns -0.438** -0.495** -0.048ns -0.418** -0.456**
RW -0.013ns -0.475** -0.459** -0.618** -0.213ns -0.403** -0.306* -0.371**
TAA -0.121ns -0.241ns -0.423** -0.784** -0.636** -0.182ns -0.111ns -0.502** -0.328**
[1] 张申宁 . 温室效应与生物相互作用, 广东化工, 2016,5(43):117-118
[2] 王玲, 魏朝富, 谢德体 . 稻田甲烷排放的研究进展. 土壤与环境, 2002,11(2):158-162.
[3] 贾仲君, 蔡祖聪 . 水稻植株对稻田甲烷排放的影响. 应用生态学报, 2003,14(11):2049-2053.
doi: 10.3969/j.issn.1673-4831.2010.06.001
[4] 葛会敏, 陈璐, 于一帆 , 等. 稻田甲烷排放与减排的研究进展. 中国农学通报, 2015,31(3):160-166.
[5] 傅志强, 黄璜, 何保良 , 等. 水稻植株通气系统与稻田甲烷排放相关性研究. 作物学报, 2007,33(9):1458-1467.
[6] 邓泓, 叶志鸿, 黄铭洪 . 湿地植物根系泌氧的特征.华东师范大学学报(自然科学版), 2007(6):69-76.
[7] 洪常青, 聂艳丽 . 根系分泌物及其在植物营养中的作用.生态环境, 2003(4):508-511.
[8] 阎丽娜, 李霞 . 水稻对稻田甲烷排放的影响. 中国农学通报, 2008,24(10):471-475.
[9] 樊明寿, 张福锁 . 缺磷条件下植物根内通气组织的形成. 自然科学进展, 2003,13(2):190-193.
[10] 傅志强, 黄璜, 何保良 , 等. 水稻植株与甲烷排放的相关因子及模糊聚类分析. 农业环境科学学报, 2008,27(1):50-57.
[11] 傅志强, 黄璜 . 种植方式对水稻甲烷排放的影响. 农业环境科学学报, 2008,27(6):2513-2517.
[12] 胡立峰, 李琳, 陈阜 , 等. 不同耕作制度对南方稻田甲烷排放的影响. 生态环境, 2006,15(6):1216-1219.
[13] 郑聚锋, 张平究, 潘根兴 , 等. 长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化. 生态学报, 2008,28(10):4864-4872.
[14] 彭世彰, 李道西, 缴锡云 , 等. 节水灌溉模式下稻田甲烷排放的季节变化. 浙江大学学报(农业与生命科学版), 2006,32(5):546-550.
[15] 向平安, 黄璜, 黄梅 , 等. 稻-鸭生态种养技术减排甲烷的研究及经济评价. 中国农业科学, 2006,39(5):968-975.
doi: 10.3321/j.issn:0578-1752.2006.05.016
[16] 丁维新, 蔡祖聪 . 土壤有机质和外源有机物对甲烷产生的影响. 生态学报, 2002,22(10):1672-1679.
doi: 10.3321/j.issn:1000-0933.2002.10.014
[17] 蔡昆争, 骆世明, 段舜山 . 水稻根系的空间分布及其与产量的关系. 华南农业大学学报(自然科学版), 2003,24(3):1-4.
[18] 刘桃菊, 戚昌瀚, 唐建军 . 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2002,35(11):1416-1419.
[19] Wang B J, Adachi K . Differences among rice cultivars in root exudation,methane oxidation,and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutrient Cycling in Agroecosystems, 2000,58(8):349-356.
doi: 10.1023/A:1009879610785
[20] 杨永良, 李增华, 侯世松 , 等. 甲烷在表面活性剂水溶液中溶解度的实验研究. 采矿与安全工程学报, 2013,30(2):302-306.
[21] 王维婷, 张春庆, 李鹏 . 玉米麦根酸测定方法研究. 分析化学, 2008,36(1):66-70.
[22] Colmer T D . Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland,paddy and deep-water rice (Oryza sativa L.). Annals of Botany, 2002,91(2):301-309.
[23] 周胜, 宋祥甫, 颜晓元 . 水稻低碳生产研究进展. 中国水稻科学, 2013,27(2):213-222.
doi: 10.3969/j.issn.10017216.2013.02.016
[24] 傅志强, 黄璜, 谢伟 , 等. 高产水稻品种及种植方式对稻田甲烷排放的影响.应用生态学报, 2015(12):167-172.
[25] 刘依依, 傅志强, 龙文飞 , 等. 水稻根系泌氧能力与根系通气组织大小相关性的研究. 农业现代化研究, 2015,36(6):1105-1111.
doi: 10.13872/j.1000-0275.2015.0150
[26] 傅志强, 刘依依, 龙攀 , 等. 深水免耕移栽稻草覆盖栽培模式对晚稻温室气体排放及产量的影响. 生态学杂志, 2015,34(5):1263-1269.
[27] 翟胜, 高宝玉, 王巨媛 , 等. 农田土壤温室气体产生机制及影响因素研究进展. 生态环境, 2008,17(6):2488-2493.
[28] 许欣, 陈晨, 熊正琴 . 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响. 土壤学报, 2016,53(6):1517-1527.
doi: 10.11766/trxb201604210087
[29] 展茗, 曹凑贵, 汪金平 , 等. 稻鸭共作对甲烷排放的影响. 应用生态学报, 2008,19(12):2666-2672.
[30] 杨镒铭 . 稻麦秸秆还田对分蘖期稻田土壤碳氮及甲烷排放的影响. 南京:南京农业大学, 2014.
[31] 刘依依 . 水稻根系泌氧能力与根系特征及甲烷排放的相关性研究. 长沙:湖南农业大学, 2015.
[1] Ji Shengdong, Li Peng, Li Jiangwei, Song Liumin, . Analysis of Peroxidase Zymogram and Genetic#br# Effects between Rice Lines and Their#br# Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[2] Ma Mengli, Zheng Yun, Zhou Xiaomei, . Genetic Diversity Analysis of Red Rice from#br# Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[3] Chen Guangzhou, Wang Guangfu, Qu Jianzhou, Si Leiyong, . Study on Grain Dehydration Rate and#br# Correlation Analysis of Major Related#br# Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[4] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[5] Chen Yingying, Wangxu Yiling, Zhu Yuhan, . Hyperspectral Estimation of Nitrogen#br# Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[6] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[7] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[8] Bo Zeng. Renovation of Main Cultivated Rice Varieties in China in the Past 30 Years [J]. Crops, 2018, 34(3): 1-7.
[9] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[10] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[11] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[12] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[13] Yong Cui. The Research Progress of Water-Dry Rotation Methods in Paddy Field [J]. Crops, 2018, 34(3): 8-14.
[14] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
[15] Menjun Duan,Yunzi Wu,Yucong Tian,Yongwu Liu,Zhangyong Liu,Fu Chen,Tao Jin. Comparision of Yield and Quality among Different Ratooning Rice Varieties [J]. Crops, 2018, 34(2): 61-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .