Crops ›› 2021, Vol. 37 ›› Issue (3): 202-209.doi: 10.16035/j.issn.1001-7283.2021.03.031

Previous Articles     Next Articles

Multi-Objective Optimization of Regulated Deficit Irrigation for Winter Wheat Based on TOPSIS in Huang-Huai-Hai Plain Well Irrigation Area

Qin Haixia1(), Zhang Yushun1, Zhang Kun2, Yang Haochen1, Qiu Xinqiang1, Wang Yanping1, Lu Zhenguang1(), Zhang Mingzhi1   

  1. 1Henan Provincial Water Conservancy Research Institute/Center of Efficient Irrigation Engineering and Technology Research of Henan Province, Zhengzhou 450003, Henan,China
    2Henan Institute of Technology, Xinxiang 453003, Henan, China
  • Received:2020-10-09 Revised:2021-03-07 Online:2021-06-15 Published:2021-06-22
  • Contact: Lu Zhenguang E-mail:qinhaixia@126.com;skylzg@126.com

Abstract:

To explore the suitable regulated deficit irrigation control index of winter wheat in the well irrigation area of Huang-Huai-Hai Plain, the effects of regulated deficit irrigation on winter wheat yield and crop water use efficiency were studied through three-year (2015-2017) experiments with different irrigation lower limits[light drought (LD), the field capacity(FC) of winter wheat was 50%, 55%, 60%, and 50% at seedling to green stage, jointing stage, heading stage, and grain filling mature stage, respectively; and moderate drought(MD), the field capacity of winter wheat was 40%, 50%, 55%, and 45% at seedling to green stage, jointing stage, heading stage, grain filling mature stage, respectively] and irrigation quota (30, 60, 90, 120, 180mm). The results showed that with the increase of irrigation quota, the yield increased first and then decreased, and the crop water use efficiency decreased. Under the 90mm irrigation quota, the yield of winter wheat increased with the increase of the lower limit of irrigation. The result of constructing a multi-objective optimization model of the comprehensive benefit of winter wheat based on the CRITIC weighted TOPSIS method was consistent with that obtained by comprehensive analysis of yield and water use efficiency, which showed that LD60 treatment was the best. Considering comprehensively, to achieve the dual goals of stable yield and efficient utilization of water resources of winter wheat in this region, the suitable irrigation quota under light drought stress degree of winter wheat was 60mm. This study can provide a scientific basis for the management of winter wheat in the well irrigation area of Huang-Huai-Hai Plain in China.

Key words: Irrigation lower limit, Irrigation quota, Yield, Water use efficiency

Table 1

Test scheme and irrigation quota"

处理
Treatment
灌水下限
Lower limit of irrigation (%)
灌水定额
Irrigation
quota (mm)
灌溉定额总量
Irrigation amount (mm)
苗期-返青期
Seedling-returning green stage
拔节期
Jointing stage
抽穗期
Heading stage
灌浆成熟期
Filling stage
2015-
2016
2016-
2017
2017-
2018
CK1 60 65 70 60 90 345 282 600
LD30 50 55 60 50 30 195 296 330
LD60 50 55 60 50 60 285 340 420
LD90 50 55 60 50 90 300 387 420
LD120 50 55 60 50 120 315 446 480
LD180 50 55 60 50 180 435 436 750
MD30 40 50 55 45 30 135 282 255
MD60 40 50 55 45 60 195 278 360
MD90 40 50 55 45 90 165 251 510
MD120 40 50 55 45 120 195 282 540
MD180 40 50 55 45 180 255 413 570
CK2 35 40 45 40 90 165 270 285

Table 2

Effects of different treatments on yield components of winter wheat"

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter
(mm)
穗长
Ear length (cm)
小穗数
Spikelet number
无效穗数
Invalid panicle
number
穗粒数
Number of
grains per spike
千粒重
1000-grain
weight (g)
2015
CK1 64.98±4.47abc 4.15±0.04a 8.48±0.88bcd 20.00±1.45bcdef 2.08±1.42a 37.58±9.39bcd 55.59±1.71a
LD30 63.69±5.27bcde 3.87±0.26ab 8.85±0.92b 20.51±1.19ab 2.43±1.65a 39.48±8.68abc 54.85±0.93a
LD60 63.39±3.58cde 4.17±0.41a 9.34±0.97a 20.20±1.64bcd 1.73±1.84a 43.28±10.37a 52.92±4.42a
LD90 62.34±6.61de 4.12±0.24a 8.87±0.91b 19.73±1.15def 2.30±1.90a 37.58±7.52bcd 55.32±0.81a
LD120 65.55±2.78ab 4.15±0.19a 9.34±0.82a 20.93±1.27a 2.05±1.22a 40.33±8.07ab 52.18±0.61a
LD180 66.74±3.19a 3.95±0.30ab 9.31±0.82a 20.43±1.28abc 1.73±1.47a 42.51±6.32a 52.15±1.38a
MD30 58.96±4.78f 3.99±0.11ab 8.36±0.81cde 19.78±1.10cdef 2.03±1.64a 36.93±9.42bcd 31.50±28.76b
MD60 62.06±3.61e 3.97±0.06ab 8.16±0.84de 19.33±1.46fg 1.90±0.90a 35.53±8.33cd 52.30±1.02a
MD90 64.13±4.29bcde 4.35±0.18a 8.59±0.69bc 20.15±1.33bcde 1.75±1.10a 39.68±9.05abc 54.10±0.82a
MD120 64.38±3.73bcd 4.25±0.21a 8.26±0.74cde 18.98±1.39g 1.78±1.07a 35.65±8.57cd 52.63±4.93a
MD180 62.73±4.05de 4.22±0.35a 8.40±0.72cde 19.40±1.28efg 1.98±1.35a 35.45±7.48cd 53.17±4.21a
CK2 59.55±3.94f 3.56±0.13b 8.01±0.93e 18.78±1.79g 2.18±1.13a 33.48±10.01d 54.81±0.65a
W 17.689** 4.627* 35.875** 19.656** 0.520ns 10.217** 1.726ns
I 9.728** 1.309ns 0.990ns 0.778ns 1.090ns 0.349ns 3.579*
W×I 7.257** 0.690ns 4.233** 7.627** 1.241ns 4.192** 4.787**
2016
CK1 63.10±3.78cde 3.65±0.39a 9.19±0.46a 22.20±1.01a 2.95±1.73e 44.00±8.53a 47.26±1.54abc
LD30 63.51±4.41bcde 3.14±0.48d 8.24±0.65cd 20.83±1.72bcd 4.80±1.84b 32.65±9.84cd 47.24±1.60abc
LD60 59.62±5.32f 3.16±0.54d 8.64±0.61bc 21.28±2.04abcd 3.65±1.53de 37.70±10.73bc 48.01±0.92abc
LD90 62.48±5.79cdef 3.39±0.37bcd 8.81±0.86ab 21.13±1.94bcd 4.80±1.91b 33.18±10.16cd 44.40±3.94c
LD120 61.85±3.98def 3.23±0.73cd 8.29±0.90cd 20.40±2.20cd 4.73±1.68bc 30.90±10.09d 45.14±5.29bc
LD180 68.48±5.70a 3.48±0.46abc 9.04±0.85ab 21.78±1.73ab 4.63±2.20bc 35.23±9.53bcd 48.19±0.86ab
MD30 61.69±3.93def 3.31±0.46bcd 8.16±0.88d 21.35±1.87abc 3.93±1.95bcd 34.73±10.36cd 46.14±2.02abc
MD60 60.52±4.22ef 3.19±0.58d 8.09±0.87d 20.30±1.33d 3.89±1.85bcd 33.16±9.50cd 45.22±3.5bc
MD90 66.47±5.46ab 3.17±0.44d 8.89±0.86ab 20.53±1.81cd 3.83±1.52cde 34.10±8.12cd 41.40±3.26d
MD120 65.46±4.94bc 3.52±0.37ab 9.13±0.73a 21.05±2.16bcd 3.20±1.09de 39.63±8.79ab 48.36±0.71a
MD180 63.86±6.67bcd 3.40±0.40bcd 8.88±1.18ab 21.33±1.65abc 4.75±1.84bc 34.23±8.99cd 39.91±2.24d
CK2 56.13±3.24g 2.77±0.28e 6.83±0.77e 18.45±1.64e 6.30±1.34a 19.30±4.84e 46.01±0.80abc
W 6.899** 11.622** 35.548** 15.000** 16.471** 23.821** 11.609**
I 13.210** 3.964** 11.979** 2.759* 3.327* 0.643ns 10.252**
W×I 9.612** 3.542** 7.302** 3.065* 3.734** 5.273** 11.153**
2017
CK1 54.77±5.09abc 3.44±0.26a 8.26±0.75ab 19.50±1.47b 4.15±2.72bc 34.80±8.26a 43.20±4.65cde
LD30 56.64±3.47ab 3.18±0.49abc 7.92±0.53abc 18.30±0.73cd 1.95±1.15d 36.05±4.21ab 45.82±11.6abcd
LD60 55.20±4.07abc 3.19±0.40ab 7.91±0.76abc 19.60±0.99ab 2.95±1.70cd 34.05±8.17ab 46.92±8.30abc
LD90 53.81±3.95bcd 2.79±0.46d 7.84±0.78b 19.15±1.95bc 4.50±2.31b 27.15±8.65cd 49.31±5.64ab
LD120 57.70±3.33a 3.12±0.42bc 8.11±0.74abc 19.60±1.27ab 2.95±1.32cd 35.75±7.71ab 43.33±10.12cde
LD180 54.11±4.92bc 2.88±0.57cd 7.71±0.80bc 18.55±1.57cd 2.75±1.16cd 31.90±9.23bc 50.27±2.84a
MD30 52.08±5.23cd 3.01±0.34bcd 8.05±0.71abc 19.40±0.82bc 2.95±2.09cd 34.75±8.38ab 48.10±3.84abc
MD60 45.51±3.76e 3.11±0.39bc 7.54±0.62c 18.05±0.76d 3.50±1.64bc 22.70±4.79d 37.68±5.45ef
MD90 50.98±4.29d 3.17±0.35abc 7.98±0.81abc 19.25±1.02bc 4.00±1.69bc 30.25±8.72bc 40.10±7.19de
MD120 57.81±3.86a 3.26±0.48ab 8.45±0.79a 20.40±1.31a 3.65±2.98bc 38.10±12.25a 42.99±4.87cde
MD180 46.82±6.91e 3.29±0.44ab 7.86±1.35bc 18.95±1.93bc 4.05±1.18bc 27.42±9.55cd 44.18±2.09bcd
CK2 45.91±4.18e 2.88±0.46cd 7.80±0.64bc 19.42±0.77bc 6.05±2.04a 21.84±6.21d 34.37±3.58f
W 32.079** 8.648** 1.399ns 0.572ns 7.829** 9.289** 11.902**
I 15.271** 1.400ns 2.278ns 6.492** 4.633** 9.496** 2.785*
W×I 5.506** 3.621** 0.981ns 6.456** 1.318ns 5.049** 3.941**

Table 3

Effects of different treatments on winter wheat yield and water use efficiency (WUE)"

年份Year 处理Treatment 产量Yield (kg/hm2) 耗水量Water consumption (mm) WUE [kg/(hm2·mm)]
2015 CK1 6845.10±1148.91a 400.65±16.94bc 17.03±1.91ab
LD30 5733.35±758.09ab 312.65±12.24e 18.30±1.48ab
LD60 6271.90±591.00ab 368.40±11.01cd 17.01±0.93ab
LD90 5878.35±661.36ab 397.05±10.53bc 14.78±1.15bc
LD120 6647.75±848.88ab 447.35±6.15b 14.88±2.17bc
LD180 6265.60±20.79ab 501.80±20.31a 12.51±0.71cd
MD30 5026.60±261.63b 255.40±11.55f 19.75±2.21a
MD60 5243.30±1211.84ab 293.50±36.78ef 17.77±1.18ab
MD90 5639.15±24.54ab 286.05±16.84ef 19.77±1.45a
MD120 5279.50±699.33ab 301.40±2.99ef 17.50±2.09ab
MD180 5341.30±770.18ab 338.50±15.18de 15.87±3.22abc
CK2 2698.45±231.29c 257.05±16.20f 10.57±1.78d
F-value
W 15.000** 386.851** 10.192**
I 0.364ns 145.853** 3.857*
W×I 0.345ns 28.838** 0.834ns
2016 CK1 6754.67±934.64a 391.08±9.61de 17.04±2.36a
LD30 5010.25±686.63bcd 343.23±3.13ef 14.60±1.97abc
LD60 5879.25±1086.73abcd 363.87±21.12ef 16.13±2.70ab
LD90 5957.75±757.68abcd 448.95±4.23cd 13.26±1.58abcd
LD120 6288.25±575.39abc 480.42±40.49b 13.17±1.70abcd
LD180 6679.75±544.89ab 552.44±3.31a 12.09±0.96bcd
MD30 4652.25±1386.53cde 323.22±25.21f 14.20±3.09abc
MD60 4471.25±1367.49de 327.22±40.83f 13.70±3.55abcd
MD90 4657.75±1226.41cde 369.03±29.95ef 12.82±3.98bcd
MD120 5154.00±1421.23abcd 428.26±51.80d 11.88±1.95cd
MD180 4819.25±850.17cd 495.96±37.82c 9.66±0.99d
CK2 3110.83±827.10e 328.79±21.49f 9.93±2.64d
F-value
W 11.110** 33.176** 5.289**
I 1.137ns 120.119** 3.384*
W×I 0.571ns 2.419ns 0.333ns
2017 CK1 6196.50±431.90a 530.23±53.55a 11.75±0.95bcd
LD30 5136.04±741.39bc 340.78±19.21df 15.02±1.38a
LD60 5275.00±268.94abc 336.68±13.09df 15.68±0.83a
LD90 5516.10±393.04abc 384.63±18.19cd 14.35±0.93ab
LD120 5953.87±122.18ab 427.20±17.24bc 13.95±0.51abc
LD180 5923.50±727.77ab 535.58±47.42a 11.06±0.92cd
MD30 3622.50±511.33d 276.24±50.94g 13.66±4.00abc
MD60 4862.63±753.38c 302.88±53.66fg 16.41±3.42a
MD90 5406.06±271.69abc 464.53±13.33b 11.64±0.38bcd
MD120 5910.50±718.11ab 445.18±59.04b 13.50±2.65abc
MD180 5636.42±795.24abc 574.56±11.69a 9.81±1.34d
CK2 1954.25±428.26e 203.37±17.88h 9.56±1.49d
F-value
W 49.081** 114.679** 3.770*
I 9.968** 122.052** 9.137**
W×I 2.305ns 10.004** 0.868ns

Table 4

Comprehensive benefit evaluation of yield components, yield and crop water use efficiency of winter wheat"

处理
Treatment
2015 2016 2017 2015-2017排名
Ranking of
2015-2017
评价值
Evaluation value
排名
Ranking
评价值
Evaluation value
排名
Ranking
评价值
Evaluation value
排名
Ranking
CK1 0.450 3 0.497 1 0.415 6 2
LD30 0.414 6 0.343 9 0.459 1 6
LD60 0.456 1 0.424 2 0.417 4 1
LD90 0.382 10 0.369 5 0.381 7 8
LD120 0.437 4 0.363 6 0.428 2 3
LD180 0.430 5 0.410 4 0.416 5 4
MD30 0.406 7 0.360 7 0.360 8 8
MD60 0.390 9 0.338 10 0.360 8 10
MD90 0.453 2 0.353 8 0.352 11 7
MD120 0.404 8 0.422 3 0.425 3 4
MD180 0.371 11 0.327 11 0.357 10 11
CK2 0.094 12 0.094 12 0.059 12 12
[1] Li J, Zhang Z, Liu Y , et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agricultural Water Management, 2019,224:105736.
doi: 10.1016/j.agwat.2019.105736
[2] Zhang X, Pei D, Chen S , et al. Performance of double-cropped winter wheat-summer maize under minimum irrigation in the North China Plain. Agronomy Journal, 2006,98(6):1620.
doi: 10.2134/agronj2005.0358
[3] Xing W, Wang W, Shao Q , et al. Estimating net irrigation requirements of winter wheat across Central-Eastern China under present and future climate scenarios. Journal of Irrigation and Drainage Engineering, 2018,144(7):05018005.
doi: 10.1061/(ASCE)IR.1943-4774.0001320
[4] Sun H, Zhang X, Liu X , et al. Impact of different cropping systems and irrigation schedules on evapotranspiration,grain yield and groundwater level in the North China Plain. Agricultural Water Management, 2019,211:202-209.
doi: 10.1016/j.agwat.2018.09.046
[5] Yang X, Chen Y, Pacenka S , et al. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. Journal of Hydrology, 2015,522:428-438.
doi: 10.1016/j.jhydrol.2015.01.010
[6] Vélez-Sánchez J E, Balaguera-López H E, Alvarez-Herrera J G . Effect of regulated deficit irrigation (RDI) on the production and quality of pear Triunfo de Viena variety under tropical conditions. Scientia Horticulturae, 2021,278:109880.
doi: 10.1016/j.scienta.2020.109880
[7] 周晨莉, 张恒嘉, 巴玉春 , 等. 调亏灌溉对膜下滴灌菘蓝生长发育和产量的影响. 水土保持学报, 2020,34(4):193-200.
[8] 沈甜, 黄小晶, 牛锐敏 , 等. 不同灌水量对贺兰山东麓葡萄生长和品质的影响. 灌溉排水学报, 2020,39(10):65-74.
[9] Du T, Kang S, Sun J , et al. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agricultural Water Management, 2010,97(1):66-74.
doi: 10.1016/j.agwat.2009.08.011
[10] 张凯, 刘战东, 强小嫚 , 等. 耕作方式和灌水处理对冬小麦-夏玉米水分利用及产量的影响. 农业工程学报, 2019,35(17):102-109.
[11] 周丽丽, 薛彬, 孟范玉 , 等. 喷灌定额和灌水频次对冬小麦产量及品质的影响分析. 农业机械学报, 2018,49(1):235-243.
[12] Liu X, Shao L, Sun H , et al. Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat. Agricultural Water Management, 2013,129:173-180.
doi: 10.1016/j.agwat.2013.08.002
[13] 李红峥, 曹红霞, 郭莉杰 , 等. 沟灌方式和灌水量对温室番茄综合品质与产量的影响. 中国农业科学, 2016,49(21):4179-4191.
[14] 吴宣毅, 曹红霞, 王虎兵 , 等. 不同种植行距和灌水量对中国西北地区日光温室短季节栽培番茄品质的交互影响. 中国农业科学, 2018,51(5):940-951.
[15] 李波, 邢经伟, 姚名泽 , 等. 深埋秸秆量和滴灌量对温室番茄品质、产量及IWUE的影响. 沈阳农业大学学报, 2019,50(1):51-59.
[16] 秦海霞, 张玉顺, 邱新强 , 等. 灌水定额对夏玉米生长及产量的影响. 中国农村水利水电, 2019(4):62-68.
[17] 郝琨, 费良军, 刘小刚 , 等. 香蕉树中度荫蔽下充分灌水提高干热区咖啡产量及品质. 农业工程学报, 2019,35(12):72-80.
[18] 文博, 魏微, 王杰才 , 等. 环境绩效评估中多种赋权方法的对比分析. 环境保护科学, 2020,46(1):41-46.
[19] 陈亮亮, 马亮, 赵经华 . 变异系数权重TOPSIS法在节水灌溉方案评价中的应用. 水资源与水工程学报, 2010,21(1):95-96.
[20] 叶霜, 李承荧, 邱霞 , 等. 基于组合赋权的TOPSIS模型在果实品质评价中的应用. 西北农林科技大学学报(自然科学版), 2017,45(10):111-121.
[21] 张明智, 牛文全, 路振广 , 等. 微润灌对作物产量及水分利用效率的影响. 中国生态农业学报, 2017,25(11):1671-1683.
[22] 陈凯丽, 赵经华, 付秋萍 , 等. 不同水氮处理对滴灌冬小麦生长、产量和耗水特性的影响. 干旱地区农业研究, 2018,36(4):125-132.
[23] Yang H, Liu H, Zheng J , et al. Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irrigation Science, 2018,36(1):61-74.
doi: 10.1007/s00271-017-0566-4
[24] Koksal E S, Tasan M, Artik C , et al. Evaluation of financial efficiency of drip-irrigation of red pepper based on evapotranspiration calculated using an iterative soil water-budget approach. Scientia Horticulturae, 2017,226:398-405.
doi: 10.1016/j.scienta.2017.08.025
[25] Wang J, Huang G, Li J , et al. Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China. Agricultural Water Management, 2017,179:167-176.
doi: 10.1016/j.agwat.2016.04.023
[26] Wang Y, Zhang Y, Zhang R , et al. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain. Science of the Total Environment, 2018,618:112-120.
doi: 10.1016/j.scitotenv.2017.10.284
[27] Golzardi F, Baghdadi A, Afshar R K . Alternate furrow irrigation affects yield and water-use efficiency of maize under deficit irrigation. Crop and Pasture Science, 2017,68(8):726.
doi: 10.1071/CP17178
[28] Agbna G, She D, Liu Z , et al. Effects of deficit irrigation and biochar addition on the growth,yield,and quality of tomato. Scientia Horticulturae, 2017,222:90-101.
doi: 10.1016/j.scienta.2017.05.004
[29] Greaves G E, Wang Y . Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment. Agricultural Water Management, 2017,188:115-125.
doi: 10.1016/j.agwat.2017.04.008
[30] Kang S, Shi W, Zhang J . An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Research, 2000,67(3):207-214.
doi: 10.1016/S0378-4290(00)00095-2
[31] 向友珍 . 滴灌施肥条件下温室甜椒水氮耦合效应研究. 杨凌: 西北农林科技大学, 2017.
[32] 宁东贤, 闫翠萍, 赵玉坤 , 等. 不同花生品种农艺、经济和品质性状TOPSIS方法评价. 山西农业科学, 2018,46(12):1986-1989.
[33] Wang H, Wang X, Bi L , et al. Multi-objective optimization of water and fertilizer management for potato production in sandy areas of northern China based on TOPSIS. Field Crops Research, 2019,240:55-68.
doi: 10.1016/j.fcr.2019.06.005
[1] Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111.
[2] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Wang Can, Zhang Guobing, Zhou Lengbo, Peng Qiu. Effects of Nitrogen Fertilizer on Yield and Nitrogen Use Characteristics in Waxy Sorghum Cultivar "Hongyingzi" [J]. Crops, 2021, 37(4): 118-122.
[3] Tong Tianyi, Cai Jianxuan, Zhang Jisheng, Li Lin, Ma Lin, He Roujing, Tang Xiangru. Effects of Fertilizer Types on Yield, Quality and Aroma of Fragrant Rice [J]. Crops, 2021, 37(4): 152-158.
[4] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[5] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[6] Wang Zhihua, Zhang Lingyun, Wei Lixing. Comparison Test of Different Triticale Varieties in Winter Fallow Saline Farmland [J]. Crops, 2021, 37(4): 191-195.
[7] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[8] Liu Xuetong, Zheng Chunlian, Cao Wei, Dang Hongkai, Cao Caiyun, Li Xiaoshuang, Li Kejiang, Ma Junyong. Effects of Long-Term Located Fertilization on Soil Organic Matter, Nitrogen Forms and Crop Yields [J]. Crops, 2021, 37(4): 130-135.
[9] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
[10] Zhao Baoping, Liu Jinghui, Ren Changzhong. Research Progress of Physiological Mechanism of Yield Formation in Oats [J]. Crops, 2021, 37(3): 1-7.
[11] Wu Zhifeng, Liu Kaili, Le Lihong, Chen Zhongping, Tang Shuangqin, Li Zujun, Han Ruicai, Zeng Yanhua, Zeng Yongjun, Pan Xiaohua, Shi Qinghua, Wu Ziming. Study on Relieving Cold Stress of Direct-Seeded Late Rice at Heading Stage by Chemical Control [J]. Crops, 2021, 37(3): 114-119.
[12] Zhang Jie, Chen Xin, Gao Fangfang, Ma Yajun, Liu Yanyan, Wu Cainü. Effects of Increased Application of Bio-Organic Fertilizer on Yield and Quality of Red Kidney Bean [J]. Crops, 2021, 37(3): 161-166.
[13] Meng Xiangyu, Ran Cheng, Liu Baolong, Zhao Zhexuan, Bai Jingjing, Geng Yanqiu. Effects of Straw Returning to Field and Nitrogen Application on Soil Nutrients and Rice Yield in Black Soil Areas of Northeast China [J]. Crops, 2021, 37(3): 167-172.
[14] Zhao Xuanwei, Zhao Yajie, Tian Zhendong, Hu Shuping, Zhao Rong, Ren Yaning, Bao Haizhu, Gao Julin. Response of Dry Matter Transportion and Yield to Sowing Date and Planting Density on Sunflower [J]. Crops, 2021, 37(3): 185-189.
[15] Chu Guanghong, Zhang Jianxin, Wang Cong, Zhao Zhanying. Effects of Topping at Different Nodes at Seedling Stage on Root Growth and Yield of High-Yield Spring Soybean [J]. Crops, 2021, 37(3): 195-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!