Crops ›› 2021, Vol. 37 ›› Issue (6): 28-35.doi: 10.16035/j.issn.1001-7283.2021.06.005

Previous Articles     Next Articles

Comparison of Two Methods for Kernel Hardness Determination of Naked Oats

An Jianghong1(), Zhang Wenjing1, Yang Xiaohong2, Nan Jinsheng1, Yang Yan1, Yan Mingxia3, Han Bing1()   

  1. 1College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
    3Hohhot Seed Management Station, Hohhot 010020, Inner Mongolia, China
  • Received:2020-09-27 Revised:2021-07-19 Online:2021-12-15 Published:2021-12-16
  • Contact: Han Bing E-mail:1910932116@qq.com;hb_nmg@163.com

Abstract:

The kernel hardness of naked oat is closely related to the degree of damage during harvesting, washing, and processing. It also affects its processing and quality. To understand the mechanism of grain hardness formation of naked oat is to make clear the detection method and the factors related to kernel hardness. In this study, the hardness of 10 naked oat materials were tested by using single kernel characterization system (SKCS) and texture analyzer (TA) in storage moisture content. The results showed that the hardness values measured by the SKCS method were negative, and the hardness values ranged from -47.69 to -15.81, which had less accuracy. TA method carried out the statistical analysis of grain deformation, compression displacement, and sample amount. To detect grain hardness, compress the grain deformation by 35%, and obtain the hardness value compressed to the 0.30mm displacement of the grain. The hardness value of the tested materials ranged from 13.87 N to 33.59 N, which could accurately represent the hardness value of the material. The best sample size was 100 grains, which were randomly selected. The hardness value of the grain was affected by the physical structure of grain. The hardness values measured by SKCS were positively correlated with the grain length, and the hardness values measured by the TA method were positively correlated with the grain width. The correlation coefficients were 0.64 and 0.65, respectively. Texture analyzer was more suitable for testing the hardness of naked oat grains comprehensively considering the physical properties of grain and the accuracy.

Key words: Avena nuda L, Kernel hardness, Single kernel characterization system, Texture analyzer, Grain traits

Table 1

Kernel hardness of 10 naked oats tested by SKCS"

序号
Number
材料名称
Material name
有效数据占比
Proportion of valid data (%)
硬度值
Hardness value
标准差
Standard deviation
1 ZY000224 71 -16.73 0.89
2 ZY000716 81 -15.81 1.07
3 ZY000717 76 -20.25 0.80
4 ZY002099 84 -47.69 0.65
5 ZY002216 85 -29.61 1.46
6 ZY002328 68 -39.52 0.22
7 ZY002399 62 -36.46 2.69
8 坝莜1号 67 -32.21 1.20
9 花早2号 67 -26.84 1.17
10 坝莜8号 67 -34.54 1.41

Fig.1

The seed morphology of ZY002399 (a) and ZY000716 (b) compressed 35% of 300 seeds by texture analyzer The upper right corner is an enlarged view of the grain, grains of ZY002399 become flat after compression, and grains of ZY000716 break along the abdominal groove after compression"

Fig.2

Diagram of ZY002399 (a) and ZY000716 (b) with the relationship between force and time when compressing different deformation variables “★”is the maximum hardness value of the kernel"

Table 2

Kernel hardness of 10 naked oats tested by TA"

序号
Number
材料名称
Material name
硬度值
Hardness value (N)
标准差
Standard deviation
1 ZY000224 39.17 1.24
2 ZY000716 39.52 0.70
3 ZY000717 31.25 0.87
4 ZY002099
5 ZY002216 26.92 0.77
6 ZY002328 30.85 2.10
7 ZY002399
8 坝莜1号 34.20 2.45
9 花早2号 34.74 2.37
10 坝莜8号 38.54 1.14

Table 3

Datas ratio of different disintegration displacements at the maximum hardness value of 10 naked oat materials %"

序号
Number
材料名称
Material name
崩解位移Disintegration displacement
≤0.20mm ≤0.30mm ≤0.33mm ≤0.37mm ≤0.40mm ≤0.45mm ≤0.50mm
1 ZY000224 0.30 3.30 7.60 17.30 24.70 39.00 51.00
2 ZY000716 2.00 11.30 20.70 36.70 51.30 68.70 84.30
3 ZY000717 0.00 1.60 2.60 7.60 14.00 26.30 38.70
4 ZY002099 0.00 0.00 0.00 0.00 0.00 0.00 2.30
5 ZY002216 0.00 4.30 8.30 18.30 30.30 48.30 72.70
6 ZY002328 0.00 0.30 0.30 1.00 1.30 3.70 9.00
7 ZY002399 0.00 0.00 0.00 0.00 0.60 8.00 22.00
8 坝莜1号 0.00 0.00 0.30 0.30 1.00 4.00 7.00
9 花早2号 0.30 2.00 5.30 10.3 17.30 32.00 49.00
10 坝莜8号 0.00 1.00 2.00 4.30 7.30 22.30 29.30

Table 4

The hardness values of 0.30mm of compressed kernel thickness of 10 naked oat materials"

序号
Number
材料名称
Material name
硬度值
Hardness value (N)
标准差
Standard deviation
1 ZY000224 27.95 0.95
2 ZY000716 33.59 0.79
3 ZY000717 25.24 0.56
4 ZY002099 18.35 0.59
5 ZY002216 22.79 0.50
6 ZY002328 21.43 0.87
7 ZY002399 13.87 0.70
8 坝莜1号 24.44 0.14
9 花早2号 27.17 0.68
10 坝莜8号 30.13 0.69

Table 5

Difference analysis of kernel hardness measured by different sample sizes N"

样本量(粒)
Sample size (grain)
ZY000224 ZY000716 ZY000717 ZY002099 ZY002216 ZY002328 ZY002399 坝莜1号
Bayou 1
花早2号
Huazao 2
坝莜8号
Bayou 8
30 28.25±0.57a 34.07±2.29a 26.67±0.85a 19.36±0.02a 24.52±2.63a 23.22±0.43a 13.24±1.15a 24.94±1.33a 25.23±0.48a 31.00±1.18a
50 28.37±0.53a 33.56±1.17a 26.06±1.91a 19.41±0.74a 24.44±1.83a 22.80±1.24ab 13.00±0.45a 25.17±0.41a 25.42±0.28a 31.14±1.08a
100 28.92±0.84a 33.51±0.75a 25.88±0.54a 18.80±0.55ab 23.24±0.51a 22.28±1.02ab 13.52±0.48a 24.88±0.21a 25.22±1.14a 30.86±0.47a
150 28.86±0.44a 33.90±0.68a 25.28±1.06a 18.77±0.54ab 21.96±2.45a 21.80±0.85b 13.58±0.63a 24.53±0.72a 25.05±0.34a 30.81±0.51a
200 28.55±0.76a 33.77±0.53a 25.33±0.59a 18.65±0.51ab 22.74±0.65a 21.87±0.27ab 13.50±0.35a 24.22±0.79a 24.63±0.82a 30.47±0.77a
250 28.01±1.00a 33.60±0.49a 25.30±0.44a 18.48±0.55b 23.14±1.87a 21.72±0.43b 13.63±0.19a 24.20±0.66a 24.72±0.67a 30.32±0.81a
300 27.86±1.10a 33.49±0.67a 25.26±0.60a 18.35±0.59b 22.79±0.49a 21.43±0.87b 13.88±0.71a 24.26±0.61a 24.76±0.79a 30.12±0.68a

Fig.3

Linear regression between SKCS-H and TA-H SKCS-H indicates the grain hardness detected by SKCS; TA-H indicates the grain hardness detected by TA"

Fig.4

Sample of physical characters in cross section of grain of Huazao 2 by stereomicroscope The red line is the auxiliary line, and the yellow double arrow is the distance between the two points; A indicates the distance between the apex of the cheeks of the grain; B indicates the depth of the ventral groove; C represents the thickness of the kernel; D represents the width of the kernel;E represents the area of the triangle formed between the apex of the cheek and the apex of the ventral groove"

Table 6

Relationship between grain hardness and grain physical properties"

材料名称
Material
name
SKCS法测得硬度
Hardness tested
by SKCS
TA法测得硬度
Hardness tested
by TA (N)
籽粒长
Seed length
(cm)
籽粒宽
Seed width
(cm)
宽长比
Width-length
ratio
籽粒厚度
Seed thickness
(cm)
腹沟深度
Abdominal
groove
depth (cm)
两颊间距
Two buccal
spacing
(cm)
腹沟切面面积
Section area of
abdominal
groove (cm2)
ZY002399 -36.46±2.69f 13.87±0.70h 7.24±0.17ab 2.05±0.03c 0.28±0.01a 1.61±0.10de 0.75±0.12b 1.18±0.13bc 0.45±0.11bc
ZY002099 -47.69±0.65h 18.35±0.59g 6.77±0.15b 2.33±0.60b 0.34±0.01a 1.64±0.02de 0.31±0.06d 1.19±0.17bc 0.18±0.02e
ZY002328 -39.52±0.22h 21.43±0.87f 7.35±0.13a 2.48±0.04ab 0.34±0.01a 1.75±0.04c 0.71±0.18b 1.21±0.07ab 0.43±0.09bcd
ZY002216 -29.61±1.46d 22.79±0.50e 7.51±0.40a 2.38±0.01ab 0.32±0.02a 1.57±0.10e 0.56±0.06c 1.25±0.04ab 0.35±0.04cd
坝莜1号
Bayou 1
-32.21±1.20e 24.44±0.14d 7.33±0.32a 2.03±0.12c 0.28±0.02a 2.07±0.01a 0.75±0.10b 1.42±0.14a 0.53±0.10b
ZY000717 -20.25±0.80b 25.24±0.56d 7.27±0.31ab 2.40±0.20ab 0.33±0.04a 1.68±0.01cd 0.56±0.26c 1.42±0.07a 0.39±0.18bcd
花早2号
Huazao 2
-26.84±1.17c 27.17±0.68c 7.57±0.42a 2.40±0.17ab 0.32±0.04a 2.01±0.02ab 1.00±0.05a 1.42±0.19a 0.71±0.06a
ZY000224 -16.79±0.89a 27.95±0.95c 7.50±0.10a 2.43±0.12ab 0.32±0.02a 1.77±0.04bc 0.41±0.10c 1.21±0.07ab 0.25±0.07de
坝莜8号
Bayou 8
-34.54±1.41f 30.13±0.69b 7.10±0.50ab 2.50±0.10ab 0.35±0.02a 2.01±0.03a 0.69±0.04b 1.33±0.19ab 0.46±0.07bc
ZY000716 -15.81±1.87a 33.59±0.79a 7.33±0.38a 2.53±0.06a 0.35±0.03a 1.76±0.02c 0.38±0.15d 1.33±0.15ab 0.25±0.08de

Table 7

Correlation between grain hardness and grain physical properties"

项目
Item
SKCS法测得硬度
Hardness tested
by SKCS
TA法测得硬度
Hardness tested
by TA
籽粒长
Seed
length
籽粒宽
Seed
width
宽长比
Width-
length ratio
籽粒厚度
Seed
thickness
腹沟深度
Abdominal
groove depth
两颊间距
Two buccal
spacing
腹沟切面面积
Section area of
abdominal groove
SKCS法测得硬度
Hardness tested by SKCS
1
TA法测得硬度
Hardness tested by TA
0.70 1
籽粒长Seed length 0.64 0.33 1
籽粒宽Seed width 0.33 0.65 0.09 1
宽长比Width-length ratio 0.04 0.50 -0.30 0.09 1
籽粒厚度Seed thickness 0.07 0.50 0.16 -0.30 -0.09 1
腹沟深度
Abdominal groove depth
-0.13 -0.11 0.44 0.16 -0.44 0.55 1
两颊间距
Two buccal spacing
0.41 0.55 0.27 0.44 -0.05 0.66 0.43 1
腹沟切面面积
Section area of
abdominal groove
-0.04 -0.01 0.44 0.27 -0.41 0.64 0.98 0.59 1
[1] Anjum F M, Walker C E. Review on the significance of starch and protein to wheat kernel hardness. Journal of the Science of Food and Agriculture, 1991, 56(1):1-13.
doi: 10.1002/(ISSN)1097-0010
[2] 陈锋, 李根英, 耿洪伟, 等. 小麦籽粒硬度及其分子遗传基础研究回顾与展望. 中国农业科学, 2005(6):1088-1094.
[3] 李硕碧. 小麦籽粒胚乳结构性状的研究. 西北农林科技大学学报(自然科学版), 2002(5):7-10.
[4] 袁翠平, 田纪春. 小麦籽粒硬度与胚乳显微结构关系研究. 中国粮油学报, 2004(2):28-31.
[5] 张瑞奇, 荣曼, 张守忠, 等. 普通小麦籽粒硬度与胚乳组成及显微结构的关系. 中国农业科学, 2011, 44(9):1753-1762.
[6] 安江红, 张文静, 赵瑛琳, 等. 麦类作物籽粒硬度的研究进展. 北方农业学报, 2020, 48(4):40-47.
[7] 臧容宇. 燕麦籽粒硬度影响因素及其与品质关系的研究. 西安:陕西师范大学, 2018.
[8] 周艳华, 何中虎, 阎俊, 等. 中国小麦硬度分布及遗传分析. 中国农业科学, 2002(10):1177-1185.
[9] 岳淑芳, 郭世华, 侯国峰, 等. 小麦籽粒硬度分布的研究. 内蒙古农业大学学报(自然科学版), 2008(2):31-36.
[10] Symes K J. The inheritance of grain hardness in wheat as measured by the particle size index. Australian Journal of Agricultural Research, 1965, 16(2):113-123.
doi: 10.1071/AR9650113
[11] Tanchak M A, Schernthaner. Tryptophanins:isolation and molecular characterization of oat cDNA clones encoding proteins structurally related to puroindoline and wheat grain softness proteins. Plant Science Limerick, 1998, 137(2):173-184.
doi: 10.1016/S0168-9452(98)00105-8
[12] Gazza L, Taddei F, Conti S, et al. Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Molecular Genetics and Genomics, 2015, 290(1):39-54.
doi: 10.1007/s00438-014-0894-5
[13] 赵仁勇. 小麦硬度测定方法的研究与应用. 面粉通讯, 2003(4):26-30.
[14] Miller B S, Afework S, Hughes J W, et al. Wheat Hardness:Time required to grind wheat with the brabender automatic. Micro hardness tester. Journal of Food Science, 1981, 46(6):1863-1865.
doi: 10.1111/jfds.1981.46.issue-6
[15] 吴连连, 宋藜, 邱雷明. 谷物硬度测量技术的现状和发展趋势. 安徽农业科学, 2007(9):2535-2536,2539.
[16] 中国国家标准化管理委员会. 小麦硬度测定 硬度指数法:GB/T 21304-2007. 北京: 中国标准出版社, 2007.
[17] 袁天军, 王家俊, 者为, 等. 近红外光谱法的应用及相关标准综述. 中国农学通报, 2013, 29(20):190-196.
[18] Martin C R, Rousser R, Barbec D L. Development of a single-kernel wheat characterization system. Transactions of the Asae, 1993, 36(50):1399-1404.
doi: 10.13031/2013.28477
[19] Tran T L, Deman J M, Rasper V F. Measurement of corn kernel hardness. Canadian Institute of Food Science and Technology Journal, 1981, 14(1):42-48.
doi: 10.1016/S0315-5463(81)72675-0
[20] 张锋伟, 赵春花, 郭维俊, 等. 基于压痕加载曲线的谷物籽粒硬度性能测定技术. 农业机械学报, 2010, 41(4):128-133.
[21] 惠光艳, 孙来军, 王佳楠, 等. 可见-近红外光谱的小麦硬度预测模型预处理方法的研究. 光谱学与光谱分析, 2016, 36(7):2111-2116.
[22] 孙红. 谷物压入硬度测定方法的研究与优化. 中国农机化学报, 2019, 40(5):80-84.
[23] 戴飞, 李兴凯, 韩正晟, 等. 改进压痕加载曲线法测定小麦籽粒各组分硬度及其仿真验证. 麦类作物学报, 2016, 36(3):347-354.
[24] 王薇. 小麦硬度声学测定方法的优化研究. 郑州:河南工业大学, 2014.
[25] 李齐超. 小麦硬度声学测定方法的研究. 郑州:河南工业大学, 2011.
[26] 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013.
[27] 李梦黎, 胡新中, 任长忠, 等. 燕麦籽粒硬度与品质特性关系研究. 中国粮油学报, 2017, 32(6):41-45,51.
[28] 袁翠平, 田纪春, 王永军. 小麦品种籽粒硬度测定方法比较研究. 麦类作物学报, 2004(2):106-109.
[29] 田素梅. 两种小麦籽粒硬度测定方法比较试验. 粮油仓储科技通讯, 2012, 28(4):38-39.
[30] 战旭梅, 郑铁松, 陶锦鸿. 质构仪在大米品质评价中的应用研究. 食品科学, 2007(9):62-65.
[31] 王虹, 周心智, 杨丽, 等. 质构仪测定番茄硬度方法的比较. 南方农业, 2009, 3(6):40-43.
[32] 张水明, 龚凌燕, 曹丹琴, 等. 石榴种皮总木质素含量及PgCOMT基因的克隆与表达. 热带亚热带植物学报, 2015, 23(1):65-73.
[33] 赵登超, 贾明, 唐贵敏, 等. 质构穿刺检测石榴籽粒质地品质. 热带作物学报, 2016, 37(7):1419-1423.
[34] 秦改花, 徐义流, 李艳玲, 等. 石榴籽粒硬度特征及其相关生理指标研究. 热带作物学报, 2018, 39(1):67-71.
[35] 王萍. 燕麦脂质. 粮食与油脂, 1999(4):57-59.
[36] 姜培彦, 马晓军. 脂质与淀粉相互作用及其对淀粉性质影响. 粮食与油脂, 2007(11):7-9.
[37] 张杰, 何义萍, 韩小贤, 等. 脱脂对燕麦淀粉理化性质影响研究. 中国粮油学报, 2013, 28(3):17-22.
[38] 张泽璞, 陶桂香, 衣淑娟, 等. 裸燕麦籽粒压缩力学性能试验及破裂生成规律分析. 沈阳农业大学学报, 2019, 50(3):371-377.
[39] 胡新中. 燕麦食品加工及功能特性研究进展. 麦类作物学报, 2005, 25(5):122-124.
[40] 皇甫红芳, 李刚, 苏占明. 燕麦产品的加工. 种业导刊, 2019(5):6-7.
[41] 杜亚军, 田志芳, 周柏玲. 燕麦主食化研究进展. 食品研究与开发, 2017, 38(12):211-214.
[42] 申瑞玲, 杨溢, 董吉林. 燕麦脱皮加工工艺研究. 轻工学报, 2017, 32(2):13-19.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!