Crops ›› 2024, Vol. 40 ›› Issue (1): 157-165.doi: 10.16035/j.issn.1001-7283.2024.01.021

Previous Articles     Next Articles

Effects of Humic Acid and Different Tillage Measures on Carbon Pool and Microbial Community Structure in Saline Alkali Soil

Yang Yanming1(), Zhou Yi1,2, Zhang Zijian1, Zhao Yang1, Li Yajian2, Pang Yaqi1, Wang Yaxun1, Han Wenyu2, Liu Jinghui1()   

  1. 1College of Agriculture, Inner Mongolia Agricultural University, Huhhot 010000, Inner Mongolia, China
    2Tongliao Institute of Agriculture and Animal Husbandry, Tongliao 028000, Inner Mongolia, China
  • Received:2022-09-03 Revised:2023-02-09 Online:2024-02-15 Published:2024-02-20
  • Contact: Liu Jinghui E-mail:68282761@qq.com;15771396947@163.com

Abstract:

Rainfall or irrigation crusting at seedling stage of saline alkali soil crops is the main cause of soil environment deterioration. In order to clarify the effects of applying humic acid and cultivation measures at seedling stage on the carbon pool and microbial community of saline alkali soil, three treatments of rotary tillage+humic acid (HA), rotary tillage+shallow loosening at seedling stage+humic acid (QHA), rotary tillage+ suppression at seedling stage+humic acid (ZHA) were set through field experiments, and rotary tillage without applying humic acid was used as the control (CK), by measuring soil pH, EC, organic carbon, inorganic carbon and bacterial and fungal community structure, the change rules were revealed. The results showed that the application of humic acid could effectively reduce soil pH, slightly reduce soil inorganic carbon (SIC) content, and increase soil TOC content, and the increase rate of shallow loosening treatment was the most significant, reaching 40.36%. Increasing humic acid application could lead to a small decrease in soil MBC, while shallow loosening and suppression will further increase the decrease; Increasing the application of humic acid could significantly increase K+, increase K+/Na+, greatly reduce Na+ damage, and improved the salt tolerance of crops. Correlation analysis showed that microorganisms were closely related to environmental factors, among which Gemmatimonadetes, Planctomycetes, Mortierellomycota and Rozellomycota were significantly positively correlated with soil pH; Acidobacteria, Mortierellomycota, Glomeromycota and Mucoromycota were significantly positively correlated with SIC; Rozellomycota was positively correlated with pH and SIC; Firmicutes and Ascomycota were significantly positively correlated with TOC, Verrucomicrobia was extremely significantly positively correlated with MBC, and Chytridiomycota was significantly positively correlated with active organic carbon. Through comprehensive analysis of various indicators, it was found that the carbon pool and microbia community structure of saline alkali soil were the best under the treatment of increasing humic acid and shallow loosening (QHA) at seedling stage.

Key words: Humic acid, Saline-alkali soil, Carbon pool, Microbial community structure

Fig.1

Effects of increasing humic acid application on soil pH, EC and moisture under different tillage measures The different lowercase letters indicate the significant difference at the 0.05 level, the same below."

Table 1

Change of different treatments on carbon pool management indexes g/kg"

处理 TOC (g/kg) DOC (g/kg) MBC (mg/kg) SIC (%) CO2 [mg/(cm2?24h)] A CPI AI CPMI
CK 6.82±0.25b 1.24±0.22bc 309.97±28.08a 9.31±0.03a 86.43±0.80b 0.22±0.05b 1.00 1.00 1.00
HA 8.00±0.70ab 2.74±0.35a 272.25±15.10a 9.21±0.08a 110.37±0.72a 0.52±0.04a 1.17 2.42 2.83
QHA 9.58±0.69a 0.91±0.06d 232.08±31.63ab 9.03±0.04a 73.42±1.15c 0.11±0.01c 1.40 0.49 0.69
ZHA 8.05±1.88ab 1.49±0.18b 151.75±28.07b 9.21±0.07a 84.58±1.14b 0.23±0.04b 1.18 1.09 1.29

Fig.2

Effects of different tillage measures on contents of K+, Ca2+, Mg2+ and Na+ in soil"

Fig.3

Effects of different tillage on bacterial (a) and fungal (b) colonies in topsoil"

Table 2

Alpha diversity indexes of bacteria and fungus in soil under different tillage measures"

项目Item 处理Treatment ACE Chao1 Simpson Shannon
细菌Bacteria CK 894.39±4.51a 876.10±11.61a 0.9925±0.0010a 8.0913±0.1030a
HA 869.64±76.57ab 860.62±97.99a 0.9858±0.0013ab 7.6918±0.1104a
QHA 843.63±54.43b 836.71±50.55a 0.9885±0.0024ab 7.8091±0.1913a
ZHA 850.87±13.79ab 837.67±12.65a 0.9824±0.0089b 7.7212±0.2688a
真菌Fungus CK 291.48±15.51a 293.24±14.51a 0.9575±0.0032a 6.1063±0.1915a
HA 282.41±19.00a 288.78±23.57a 0.9339±0.0086a 5.7549±0.1114a
QHA 242.94±14.83a 232.14±29.58a 0.7823±0.1019a 4.2029±1.1615a
ZHA 301.93±37.23a 315.46±138.48a 0.9378±0.0221a 5.6122±0.3665a

Fig.4

Distribution of bacteria (a) and fungi (b) phylum levels in soils under different tillage measures"

Fig.5

Distribution of bacteria (a) and fungi (b) in soil under different tillage measures"

Fig.6

Correlation between soil bacteria and environmental factors with different tillage measures “*”and“**”indicate significant correlation at the 0.05 and 0.01 levels, respectively, the same below."

Fig.7

Correlation between soil fungus and environmental factors under different tillage measures"

Fig.8

Effects of different tillage measures on biological yield of oat"

[1] Shaw R J, Coughlan K J, Beli L C. Sodic soils: Distribution, properties, management and environmental consequences. Root Zone Sodicity, 1998, 32:95-106.
[2] 史文娟, 杨军强, 马媛. 旱区盐碱地盐生植物改良研究动态与分析. 水资源与水工程学报, 2015, 26(5):229-234.
[3] 郭书亚, 尚赏, 王坤, 等. 秸秆覆盖深松对夏玉米田土壤有机碳库的影响. 作物杂志, 2022(2):113-118.
[4] 史文娟, 杨军强, 马媛. 旱区盐碱地盐生植物改良研究动态与分析. 水资源与水工程学报, 2015, 26(5):229-234.
[5] 王建政, 古润生. 旱地小麦保护性耕作增加播前地表处理的研究. 农业工程学报, 2003, 19(4):139-141.
[6] Sang X, Wang D, Lin X. Effects of tillage practices on water consumption characteristics and grain yield of winter wheat under different soil moisture condition. Soil and Tillage Research, 2016, 63:185-194.
[7] Hipps N A, Hodgson D R. Residual effects of a slant-legged subsoiler on some soil physical conditions and the root growth of spring barley. Journal of Agricultural Science, 1988, 110:481-489.
[8] 展文洁, 刘剑钊, 梁尧, 等. 不同耕作方式对玉米根系特性及养分吸收转运的影响. 植物营养与肥料学报, 2020, 26(5):817-825.
[9] 张博文, 杨彦明, 张兴隆, 等. 连续深松对黑土结构特性和有机碳及碳库指数影响. 中国土壤与肥料, 2019(2):6-13.
[10] 南江宽, 陈效民, 王晓洋, 等. 不同改良剂对滨海盐渍土盐碱指标及作物产量的影响研究. 土壤, 2013, 45(6):1108-1112.
[11] 王倩姿, 王玉, 孙志梅, 等. 腐植酸类物质的施用对盐碱地的改良效果. 应用生态学报, 2019, 30(4):1227-1234.
doi: 10.13287/j.1001-9332.201904.001
[12] 依艳丽. 土壤物理研究法. 北京: 北京大学出版社, 2009.
[13] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000:34-109.
[14] 严登华, 王刚, 金鑫, 等. 滦河流域不同土地利用类型土壤微生物量C、TN、TP垂直分异规律及其影响因子研究. 生态环境学报, 2010, 19(8):1844-1849.
doi: 10.16258/j.cnki.1674-5906(2010)08-1844-06
[15] 张向前. 耕作方式对华北平原麦玉两熟农田土壤固碳及作物生长的影响. 北京: 中国农业大学, 2017.
[16] 中国土壤学会. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
[17] 杨彩红, 耿艳香, 伏星舟, 等. 麦茬免耕对不同麦玉轮作方式土壤有机碳含量的影响. 麦类作物学报, 2022, 42(3):1-9.
[18] 张延. 秸秆还田下耕作措施对农田黑土有机碳组分及其稳定性的影响. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.
[19] 杨帆. 轮作结合施肥对土壤有机碳组分及相关性状的影响. 呼和浩特:内蒙古农业大学, 2018.
[20] 李小华, 张建民, 黄占斌. 腐植酸在退化土壤改良中的应用研究. 科学, 2020, 72(2):31-34,4.
[21] 赫臣, 郑桂萍, 赵海成, 等. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响. 作物杂志, 2018(3):129-134.
[22] 赵红, 郑殷恬, 吕贻忠, 等. 免耕与常规耕作下黑土腐殖酸含量与结构的差异. 生态环境学报, 2010, 19(5):1238-1241.
doi: 10.16258/j.cnki.1674-5906(2010)05-1238-04
[23] 于晓东, 郭新送, 陈士更, 等. 腐植酸土壤调理剂对黄河三角洲盐碱土化学性状及小麦产量的影响. 农学学报, 2020, 10(11):25-31.
doi: 10.11923/j.issn.2095-4050.cjas20190700100
[24] 唐雪, 尚辉, 刘广明, 等. 复合改良剂对盐碱土改良及植物生长的影响. 土壤, 2021, 53(5):1033-1039.
[25] 韩剑宏, 孙一博, 张连科, 等. 生物炭与腐殖酸配施对盐碱土理化性质的影响. 干旱地区农业研究, 2020, 38(6):121-127.
[26] 叶雪松. 耕作方式对土壤物理性状、酶活性以及燕麦产量的影响. 呼和浩特:内蒙古大学, 2015.
[27] 陈静, 黄占斌. 腐植酸在土壤修复中的作用. 腐植酸, 2014(4):30-34,65.
[28] 王晓丽, 安梦洁, 张春媛, 等. 改良剂调控盐碱胁迫对棉田土壤微生物多样性的影响. 石河子大学学报(自然科学版): 2022, 40(2):180-187.
doi: 10.13880/j.cnki.65-1174/n.2022.21.003
[29] 李志鹏, 刘浩, 于晓娜, 等. 黄腐酸对植烟土壤改良及烟叶品质的影响研究. 腐植酸, 2017(5):45.
[30] 杨永辉, 武继承, 丁晋利, 等. 长期免耕对不同土层土壤结构与有机碳分布的影响. 农业机械学报, 2017, 48(9):173-182.
[31] 赵懿, 杜建军, 张振华, 等. 秸秆还田方式对土壤有机质积累与转化影响的研究进展. 江苏农业学报, 2021, 37(6):1614-1622.
[32] 皮婧婧, 肖兰, 赵硕祎, 等. 腐殖酸辅助解盐促生菌改良克拉玛依盐碱地土壤技术. 浙江农业科学, 2021, 62(3):600-602,607.
[33] 张志美, 袁梦, 李燊, 等. 不同改良剂对东营盐碱地改良效果研究. 腐植酸, 2021(6):15-21.
[34] 孙昭安, 王方, 张珊, 等. 秸秆添加对石灰性土壤有机与无机碳释放的影响. 土壤学报, 2021, 58(6):1520-1529.
[35] 袁婉潼. 生物腐植酸对盐碱土壤微生物数量和酶活性的影响. 腐植酸, 2017(2):45.
[36] 宋以玲, 于建, 陈士更, 等. 腐植酸生物有机肥对土壤性质及小麦产量的影响. 腐植酸, 2019(3):34-41,47.
[37] 董睿潇, 莫力闻, 刘丹阳, 等. 腐植酸对土壤微生物和酶活性的影响. 腐植酸, 2020(4):21-27.
[38] 常豆豆, 王开勇, 孟春梅, 等. 棉粕对盐碱胁迫下滴灌棉田微生物群落结构的影响. 石河子大学学报(自然科学版), 2021, 39(5):560-566.
[39] 张博文, 杨彦明, 李金龙, 等. 连续深松对黑土水热酶特性及细菌群落的影响. 生态学杂志, 2018, 37(11):3323-3332.
[40] 张华英, 刘景辉, 赵宝平, 等. 保护性耕作对风沙区农田土壤物理性状及玉米产量的影响. 干旱地区农业研究, 2016, 34 (3):108-114.
[1] Guo Shuya, Shang Shang, Wang Kun, Fu Guozhan, Lu Guangyuan. Effects of Straw Mulching and Subsoiling on Soil Organic Carbon Pool in Summer Maize Field [J]. Crops, 2022, 38(2): 113-118.
[2] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
[3] Wang Qi, Sun Wen, Wu Junying, Liu Jinghui, Zhao Baoping. Effects of Different Irrigation Amounts and Spraying Humic Acid on Photosynthetic Characteristics and Yield of Oat [J]. Crops, 2021, 37(1): 98-103.
[4] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[5] Jingang Liang,Zhengguang Zhang. Advance on Effects of Genetically ModifiedCrops on Soil Ecosystems [J]. Crops, 2017, 33(4): 1-6.
[6] Yan Liu,Bo Li,Wentao Sun,Yang Yu. Effects of Bio-organic Fertilizer on Physiological Characters and Yield of Maize in Saline-Alkali Soil [J]. Crops, 2017, 33(2): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!