Crops ›› 2024, Vol. 40 ›› Issue (4): 82-89.doi: 10.16035/j.issn.1001-7283.2024.04.010

Previous Articles     Next Articles

Analyzing of the Mixed Inheritance Model of Major Gene Plus Polygene of Main Traits in Foxtail Millet

Xie Huifang1(), Wei Menghan2, Song Zhongqiang1, Liu Jinrong1, Wang Suying1, Xing Lu1, Wang Shujun1, Liu Haiping1, Jia Xiaoping3(), Song Hui1()   

  1. 1Anyang Academy of Agricultural Sciences, Anyang 455000, Henan, China
    2Xuchang Vocational Technical College, Xuchang 461000, Henan, China
    3College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
  • Received:2023-02-10 Revised:2023-09-21 Online:2024-08-15 Published:2024-08-14

Abstract:

This study revealed the genetic rules of nine main agronomic traits in foxtail millet, including heading date, growth period, plant height, numbers of stem nodes, internode length under panicle, panicle neck diameter, panicle length, panicle diameter, single panicle weight, grain weight per panicle. These results served as a guide for future genetic improvement and gene mapping of related traits. A recombinant inbred line (RIL) population with 584 families was constructed using Yugu 18 as the female parent and Jigu 38 as the male parent. Nine traits of the RIL population were analyzed using the mixed inheritance model of major gene plus polygene. The results showed that the traits of RIL population showed different degree of separation, the highest variation coefficient was grain weight per panicle, the lowest coefficient of variation was growth period. Correlation analysis was carried out for traits, the result showed that there were significant correlations among the traits. The highest correlation with grain weight per panicle was single panicle weight, following by plant height. The genetic model analysis showed that strong main gene effects were seen in panicle neck diameter, growth period, and heading date, major genes also showed a high heritability.

Key words: Foxtail millet, Recombinant inbred line (RIL), Agronomic traits, Major gene plus polygene, Inheritance model

Table 1

Characteristics description of parents and RIL populations"

性状
Trait
亲本Parent RIL群体RIL population
豫谷18
Yugu 18
冀谷38
Jigu 38
最小值
Min. value
最大值
Max. value
中位数
Median
平均值
Mean value
标准偏差
Standard deviation
变异系数
Variable coefficient (%)
偏斜度
Skewness
峰度
Kurtosis
抽穗期HD (d) 53.00 56.00 49.00 68.00 57.00 56.79 3.09 5.45 0.01 -0.09
生育期GP (d) 92.00 94.00 87.00 101.00 92.00 91.60 2.82 3.08 0.34 0.45
株高PH (cm) 113.17 124.00 92.00 150.33 124.00 123.92 9.69 7.82 -0.15 0.09
主茎节数NSN 12.33 14.00 10.00 16.67 13.33 13.42 1.05 7.85 -0.32 0.17
穗下节间长PIL (cm) 29.00 38.33 17.00 41.00 29.67 29.49 3.53 11.99 -0.27 0.33
穗颈粗PND (cm) 2.50 3.19 2.10 3.67 2.75 2.77 0.27 9.77 0.70 0.75
穗长PL (cm) 19.83 23.83 15.67 29.67 22.67 22.72 2.11 9.30 0.08 0.46
单穗重SPW (g) 17.95 14.84 9.44 24.44 15.78 15.92 2.59 16.25 0.44 0.02
单穗粒重GWP (g) 14.62 11.09 7.22 19.77 12.05 12.21 2.12 17.40 0.48 0.14

Fig.1

Frequent (column), mixed (red line), and component (black line) distributions for nine traits in RIL population"

Fig.2

The ratio of transgressive inheritance in the RIL population"

Table 2

Correlation of the traits in the RIL populations"

性状
Trait
抽穗期
HD
生育期
GP
株高
PH
主茎节数
NSN
穗下节间长
PIL
穗颈粗
PND
穗长
PL
单穗重
SPW
单穗粒重
GWP
抽穗期HD 1.000
生育期GP 0.716** 1.000
株高PH 0.166** 0.151** 1.000
主茎节数NSN 0.385** 0.260** 0.482** 1.000
穗下节间长PIL -0.122** -0.070 0.347** -0.154** 1.000
穗颈粗PND 0.143** 0.052 0.038 0.106* -0.092* 1.000
穗长PL 0.005 0.052 0.146** 0.056 0.018 0.484** 1.000
单穗重SPW 0.119** 0.130** 0.289** 0.061 0.118** 0.256** 0.250** 1.000
单穗粒重GWP 0.124** 0.138** 0.314** 0.056 0.145** 0.242** 0.260** 0.964** 1.000

Table 3

Maximum logarithmic likelihood value (MLV) and Akaike’s information criterion (AIC) values of candidate models for nine traits, and the adaptability test of the genetic models"

性状
Trait
备选模型
Candidate model
极大对数似然函数值
Maximum logarithmic likelihood value
AIC值
AIC value
适合性检验
Test of goodness-of-fit
抽穗期HD 4MG-AI -1477.311 2976.621 1/0/0/2/2
3MG-AI -1489.350 2996.700 1/1/1/2/2
MX2-ED-A -1495.658 3003.316 0/0/0/1/1
生育期GP 4MG-AI -1172.061 2366.122 0/0/3/1/1
MX3-AI-A -1366.896 2755.791 0/0/1/1/1
MX2-EA-A -1372.996 2755.992 0/0/1/1/1
株高PH MX2-IE-A -2165.974 4341.948 0/0/0/0/0
MX2-CE-A -2165.999 4341.998 0/0/0/0/0
PG-AI -2166.407 4342.813 0/0/0/0/0
主茎节数NSN 3MG-CEA -867.231 1740.461 0/0/0/1/1
2MG-CE -868.123 1742.246 0/0/0/1/1
2MG-AE -868.004 1744.008 0/0/0/1/1
穗下节间长PIL PG-AI -1591.805 3193.611 0/0/0/0/0
MX2-AI-AI -1589.787 3195.574 0/0/0/0/0
MX1-A-AI -1591.813 3195.625 0/0/0/0/0
穗颈粗PND MX3-AI-A -39.956 101.912 0/0/1/0/0
MX2-IE-A -405.471 820.942 0/1/2/1/1
MX2-CE-A -405.489 820.978 0/1/2/1/1
穗长PL PG-AI -1269.208 2548.416 0/0/0/0/0
MX2-IE-A -1269.400 2548.801 0/0/0/0/0
MX2-CE-A -1269.430 2548.860 0/0/0/0/0
单穗重SPW MX2-AE-A -1381.294 2774.588 0/0/0/0/0
MX2-AI-AI -1380.063 2776.127 0/0/0/0/0
MX2-AI-A -1381.294 2776.588 0/0/0/0/0
单穗粒重GWP MX2-DE-A -1265.140 2540.281 0/0/0/0/0
MX2-AE-A -1264.671 2541.342 0/0/0/0/0
MX2-ED-A -1264.898 2541.797 0/0/0/0/0

Table 4

Univalent genetic parameters of the traits in the RIL population"

性状Trait 模型Model m(m1) m2 m3 d(da) db dc iab(i*) iac ibc iabc [d]
抽穗期HD MX2-ED-A 56.925 0.265 3.876 -3.703
生育期GP MX3-AI-A 91.642 -2.284 -1.183 -1.187 0.086 0.087 1.184 -0.084 3.739
株高PH MX2-IE-A 122.150 -3.575 -5.417
主茎节数NSN 3MG-CEA 13.324 -0.361 -0.361 -0.361
穗下节间长PIL PG-AI 29.000 38.33 29.462
穗颈粗PND MX3-AI-A 2.805 -2.514 -2.386 -2.514 -0.021 0.107 -0.021 -2.386 9.480
穗长PL PG-AI 19.830 23.83 22.716
单穗重SPW MX2-AE-A 15.895 1.151 0.573 -0.745
单穗粒重GWP MX2-DE-A 13.452 -1.019 1.765

Table 5

Bivalent genetic parameters of the traits in the RIL population"

性状
Trait
模型
Model
方差
Variance
主基因方差
Major gene variance
多基因方差
Polygenes variance
主基因遗传率
Major gene heritability (%)
多基因遗传率
Polygenes heritability (%)
抽穗期HD MX2-ED-A 2.50 7.06 1.69 73.84 17.71
生育期GP MX3-AI-A 1.13 6.82 0.00 85.76 0.00
株高PH MX2-IE-A 83.97 10.01 83.56 10.65 88.91
主茎节数NSN 3MG-CEA 0.70 0.41 37.31
穗下节间长PIL PG-AI 12.94 12.45 96.10
穗颈粗PND MX3-AI-A 0.04 0.20 0.02 82.88 9.99
穗长PL PG-AI 4.45 4.34 97.24
单穗重SPW MX2-AE-A 3.69 3.01 3.52 44.91 52.60
单穗粒重GWP MX2-DE-A 2.71 1.81 2.55 40.00 56.51
[1] Yang X Y, Wan Z W, Perry L, et al. Early millet use in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10):3726-3730.
[2] Lu H Y, Zhang J P, Liu K B, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18):7367-7372.
[3] Doust A N, Kellogg E A, Devos K M, et al. Foxtail millet: a sequence-driven grass model system. Plant Physiology, 2009, 149(1):137-141.
doi: 10.1104/pp.108.129627 pmid: 19126705
[4] Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Reviews in Biotechnology, 2013, 33(3):328-343.
doi: 10.3109/07388551.2012.716809 pmid: 22985089
[5] Muthamilarasan M, Prasad M. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theoretical and Applied Genetics:International Journal of Breeding Research and Cell Genetics, 2015, 128(1):1-14.
[6] 刘三才, 朱志华, 李为喜, 等. 谷子品种资源微量元素硒和蛋白质含量的测定与评价. 中国农业科学, 2009, 42(11):3812-3818.
[7] Liu M X, Ping L. Distribution of vitamin E content and its correlation with agronomic traits and carotenoids content in foxtail millet varieties in China. Acta Agronomica Sinica, 2013, 39(3):398.
[8] Shao L H, Wang L, Bai W W, et al. Evaluation and analysis of folic acid content in millet from different ecological regions in Shanxi province. Scientia Agricultura Sinica, 2014, 47(7):1265-1272.
[9] Poole G J. Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot in wheat and a survey of Fusarium pseudograminearum and F. culmorum in the Pacific Northwest of the U.S. Dissertations & Theses-Gradworks, 2010, 99(6).
[10] Zhai H J, Feng Z Y, Li J, et al. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-Based linkage map. Frontiers in Plant Science, 2016, 7:1617.
[11] Li H J, Yang Q S, Fan N N, et al. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid Zhengdan 958 by design III. BMC Genetics, 2017, 18(1):36.
doi: 10.1186/s12863-017-0503-9 pmid: 28415964
[12] 王靖天, 张亚雯, 杜应雯, 等. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0. 作物学报, 2022, 48(6):1416-1424.
doi: 10.3724/SP.J.1006.2022.14088
[13] 盖钧镒, 章元明, 王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000, 26(4):385-391.
[14] 章元明, 盖钧镒. 数量性状主基因+多基因混合遗传分析中鉴定多基因存在的IECM算法. 生物数学学报, 1999, 14(4):429-434.
[15] 章元明, 盖钧镒. 利用DH或RIL群体检测QTL体系并估计其遗传效应. 遗传学报, 2000, 27(7):634-640.
[16] 解松峰, 吉万全, 王长有, 等. 等小麦穗部性状的主基因+多基因混合遗传模型分析. 中国农业科学, 2019, 52(24):4437-4452.
doi: 10.3864/j.issn.0578-1752.2019.24.001
[17] 江建华, 张武汉, 党小景,等. 水稻核不育系柱头性状的主基因+多基因遗传分析. 作物学报, 2021, 47(7):1215-1227.
doi: 10.3724/SP.J.1006.2021.02057
[18] 龚举武, 刘爱英, 段丽, 等. 不同环境下‘中棉所70’RIL群体棉铃重的主基因+多基因遗传分析. 中国农学通报, 2019, 35(15):128-137.
doi: 10.11924/j.issn.1000-6850.casb18010162
[19] 朱猛, 于大伟, 员海燕. 抗旱型玉米苗期根系性状的主基因+多基因遗传模型分析. 西北农林科技大学学报(自然科学版), 2022, 50(1):81-90.
[20] 张毛宁, 黄冰艳, 苗利娟, 等. 巢式杂交分离群体的花生籽仁性状的主基因+多基因混合遗传模型分析. 中国农业科学, 2021, 54(13):2916-2939.
doi: 10.3864/j.issn.0578-1752.2021.13.019
[21] 吴兴富, 焦芳婵, 陈学军, 等. 烟草主要农艺性状的主基因+多基因遗传分析. 分子植物育种, 2021, 19(19):6438-6447.
[22] 崔月, 陆建农, 施玉珍, 等. 蓖麻株高性状主基因+多基因遗传分析. 作物学报, 2019, 45(7):1111-1118.
doi: 10.3724/SP.J.1006.2019.84127
[23] 郭淑青, 宋慧, 杨清华, 等. 谷子株高及穗部性状主基因+多基因混合遗传模型分析. 中国农业科学, 2021, 54(24):5177-5193.
doi: 10.3864/j.issn.0578-1752.2021.24.002
[24] 乔慧琴, 杜晓芬, 杨慧卿, 等. 谷子不育系高146A不育与早抽穗性状遗传关系分析. 中国农学通报, 2015, 31(27):159-163.
doi: 10.11924/j.issn.1000-6850.casb15020101
[25] 陆平. 谷子种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
[26] 任芹勇, 樊巧利, 李涛, 等. 65份谷子品种农艺性状聚类和相关性. 分子植物育种, 2017, 15(12):5178-5188.
[27] 李晓宇, 王昆鹏, 刘迎春, 等. 谷子主要农艺性状分析. 内蒙古农业大学学报(自然科学版), 2015, 36(2):26-30.
[28] 赵芳, 张晓磊, 魏玮, 等. 杂交谷子重组自交系群体农艺性状分析. 种子, 2021, 40(8):30-38.
[29] 贾小平, 李剑峰, 赵渊, 等. 谷子抽穗期与农艺性状的相关与回归分析. 植物遗传资源学报, 2019, 20(3):634-645.
[30] 王晓宇, 刁现民, 王节之, 等. 谷子SSR分子图谱构建及主要农艺性状QTL定位. 植物遗传资源学报, 2013, 14(5):871-878.
doi: 10.13430/j.cnki.jpgr.2013.05.017
[31] 杨慧卿, 王军, 袁峰, 等. 西北春谷区中晚熟组谷子主要农艺性状的相关和通径分析. 河北农业科学, 2010, 14(11):105-106,111.
[32] 张艾英, 郭二虎, 刁现民, 等. 2005-2015年西北春谷中晚熟区谷子育成品种评价. 中国农业科学, 2017, 50(23):4486-4495.
doi: 10.3864/j.issn.0578-1752.2017.23.003
[33] 解云, 李强, 郭世华. 30份谷子品种农艺性状的遗传多样性及相关性. 分子植物育种, 2020, 18(9):3079-3085.
[34] 陈茜午, 张永虎, 温蕊. 56份谷子品种(系)表型性状比较分析. 种子, 2020, 39(8):56-60.
[35] Liu T, He J, Dong K, et al. QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genomics, 2020, 21(1):141.
doi: 10.1186/s12864-020-6553-9 pmid: 32041544
[36] 杨朋娟, 张世文, 王振山, 等. 多环境评估谷子资源主要农艺性状遗传参数. 植物遗传资源学报, 2022, 23(4):1046-1054.
[37] He Q, Zhi H, Tang S, et al. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theoretical and Applied Genetics, 2021, 134(2):557-572.
doi: 10.1007/s00122-020-03714-w pmid: 33128073
[38] 解松峰, 吉万全, 张耀元, 等. 小麦重要产量性状的主基因+多基因混合遗传分析. 作物学报, 2020, 46(3):365-384.
doi: 10.3724/SP.J.1006.2020.91044
[39] Zhang K, Fan G Y, Zhang X X, et al. Identification of QTLs for 14 agronomically important traits in setaria italica based on SNPs generated from high-throughput sequencing. Genes|Genomes| Genetics, 2017, 7(5):1587-1594.
[40] Wang J, Wang Z L, Du X F, et al. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE, 2017, 12(6):e0179717.
[1] Ma Yanhua, Sun Dequan, Li Suiyan, Lin Hong, Pan Liyan, Li Donglin, Fan Jinsheng, Wu Jianzhong, Yang Guowei. Comprehensive Evaluation of Main Agronomic Traits and Screening of Excellent Germplasms of Maize Landraces in Heilongjiang Province [J]. Crops, 2024, 40(4): 103-112.
[2] Yuan Di, Zhi Hui, Wang Haigang, Zhang Hui, Yao Qi, Liang Hongkai, Wang Junjie, Chen Ling, Diao Xianmin, Jia Guanqing. Genetic Diversity Analysis and Comprehensive Evaluation of Registered Varieties of Foxtail Millet in China [J]. Crops, 2024, 40(4): 14-23.
[3] Du Jie, Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia. Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet [J]. Crops, 2024, 40(4): 144-151.
[4] Li Hu, Wu Zishuai, Liu Guanglin, Luo Qunchang, Chen Chuanhua, Zhu Qinan. Effects of Different Cultivation Conditions on Cadmium Content of Grains and Main Characteristics in Rice [J]. Crops, 2024, 40(4): 203-208.
[5] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[6] Song Quanhao, Cao Yanwei, Jin Yan, Xiao Yonggui, Song Jiajing, Zhao Lishang, Chen Jie, Bai Dong, Zhu Tongquan. Comprehensive Evaluation of 50 Wheat Germplasm Resources Derived from ICARDA [J]. Crops, 2024, 40(4): 54-61.
[7] Song Hui, Wang Tao, Xing Lu, Liu Junfang, Zhang Yang, Liu Jinrong, Chen Hongqi, Feng Baili. Transcriptome Analysis of Different Foxtail Millet (Setaria italica L.) Varieties Treated with Imazapic Herbicide [J]. Crops, 2024, 40(3): 13-22.
[8] Du Jie, Su Fuli, Xia Qing, Zhi Hui, Wang Wenxia. Physiological and Biochemical Responses of Foxtail Millet to Low Temperature Stress at Seedling Stage [J]. Crops, 2024, 40(3): 180-185.
[9] Bao Xuelian, Wen Feng, Jin Xiaoguang, Hu Ruimei, Huang Qianjing, Zhang Guihua, Qi Jinquan, Bai Yingzhe, Wuyuehan , Baiyilatu . Adaptability Analysis of Different Millet Varieties in the Main Grain-Producing Areas of Eastern Inner Mongolia [J]. Crops, 2024, 40(3): 201-206.
[10] Liu Ying, Yin Zequn, Wu Baichen, Xu Mingli, Liu Chang, Shi Huishu, Pang Bo, Miao Xingfen. Effects of Compound Saline-Alkali Stress on Germination Period of Different Foxtail Millet Varieties and Screening of Saline-Alkali Tolerance Varieties [J]. Crops, 2024, 40(3): 207-215.
[11] Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79.
[12] Zhang Lu, Li Dengming, Zhai Xiaoyu, Wu Junying, Gao Shihua, Zhao Yufei. Differences in Agronomic and Quality Traits of Oat at Cutting Time and Their Relationships with Regeneration Performance [J]. Crops, 2024, 40(1): 220-228.
[13] Sun Yuantao, Long Wenjing, Li Yuan, Liu Tianpeng, Zhao Ganlin, Ding Guoxiang, Ni Xianlin. Genetic Diversity Analysis of 45 Glutinous Sorghum Germplasms Based on Major Agronomic Traits and SSR Markers [J]. Crops, 2024, 40(1): 57-64.
[14] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[15] Zhao Lijie, Zhao Haiyan, Han Genlan, Wang Jiang, Nie Mengʼen, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen Fertilizer Combined with Organic Fertilizer on Quality of Millet [J]. Crops, 2023, 39(6): 224-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!