Crops ›› 2023, Vol. 39 ›› Issue (6): 181-189.doi: 10.16035/j.issn.1001-7283.2023.06.025

Previous Articles     Next Articles

Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem

Dong Haosheng1,2(), Wang Qi1, Yan Peng1, Xu Yanli1, Zhang Wei1, Lu Lin1(), Dong Zhiqiang1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Agronomy College, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2022-07-23 Revised:2023-09-15 Online:2023-12-15 Published:2023-12-15

Abstract:

This experiment was conducted using foxtail millet variety of Zhangzagu 13 in Gongzhuling Experimental Station of Institute of Crop Sciences, Chinese Academy of Agricultural Sciences from 2020 to 2021. Different spraying periods of ECK (single treatment at jointing stage, double treatments at jointing stage and pre-heading stage) and different spraying dose treatments (0.90, 1.35, 1.80 and 2.25L/ha) were set to investigate the effects of ECK on the lodging resistance of stems and yield of foxtail millet. The results showed that with the increase of the spraying dose of ECK, the plant height, height of gravity center, internode length, lodging rate and lodging index of foxtail millet decreased. The physicochemical characteristics of foxtail millet stems showed that the cellulose content of the second internode at the base decreased with the increase of the spraying dose of ECK, while the hemicellulose and lignin content first increased and then decreased. Under the double spraying treatments of ECK at jointing stage and pre-heading stage, the above indexes changed more significantly. Under the double treatments of spraying 0.90L/ha ECK at jointing stage and pre-heading stage, the yield of foxtail millet was the highest, and the yields increased in 2020 and 2021 were 10.33% and 28.04% compared with the control, respectively. In conclusion, rational application of ECK could improve the morphological and physicochemical properties of foxtail millet stems, enhance lodging resistance and increase yield.

Key words: ECK, Lodging resistance, Yield, Foxtail millet

Table 1

Spraying period and treatment concentration of ECK"

处理
Treatment
喷施时期
Spraying period
喷施剂量
Spray dose (L/hm2)
CK 拔节期+抽穗前期 清水
TR1 拔节期 0.90
TR2 拔节期 1.35
TR3 拔节期 1.80
TR4 拔节期 2.25
TR5 拔节期+抽穗前期 0.90+0.45
TR6 拔节期+抽穗前期 0.90+0.90
TR7 拔节期+抽穗前期 0.90+1.35

Fig.1

Effects of ECK on lodging rate and lodging index of foxtail millet stems Different lowercase letters indicate significant difference at 5% level, the same below"

Fig.2

Effects of ECK treatments on the plant height and the height of gravity center of foxtail millet"

Table 2

Effects of ECK treatments on internode length of foxtail millet cm"

节间
Internode
节间长度Internode length
CK TR1 TR2 TR3 TR4 TR5 TR6 TR7
2 5.75a 3.25b 2.34c 2.33c 2.26c 2.31c 2.05c 1.91c
3 9.17a 7.22b 5.36c 4.65c 4.40c 4.58c 4.39c 4.32c
4 10.25a 8.26b 6.99b 6.84b 6.15c 6.57c 6.07c 6.03c
5 11.10a 8.57b 7.83b 7.78b 7.75b 7.74b 7.74b 7.67b
6 11.13a 9.10b 8.36b 8.25c 7.94c 8.14c 7.96c 7.90c
7 10.89a 9.70b 9.60b 9.35bc 8.57d 9.27bcd 8.57d 8.30cd
8 10.41a 10.11ab 10.10ab 10.07ab 9.55ab 9.52ab 9.49ab 9.27b
9 10.83a 10.24ab 10.07ab 10.04ab 9.45b 9.80ab 9.42b 9.28b
10 9.13a 8.80a 8.75a 8.57a 8.54a 8.38a 8.15a 8.09a
11 9.05a 8.40a 8.38a 8.32a 8.32a 7.38b 7.23bc 6.54c
12 9.01a 8.90a 8.58a 8.51a 8.07a 6.01b 5.55bc 4.64c
13 9.07a 8.70a 8.58a 8.32a 8.13a 4.99b 4.91b 3.07c

Table 3

Effects of ECK treatments on internode diameter of foxtail millet mm"

节间
Internode
茎粗Internode diameter
CK TR1 TR2 TR3 TR4 TR5 TR6 TR7
2 7.21b 8.40a 8.61a 8.72a 8.75a 8.75a 8.91a 8.97a
3 7.01b 8.42a 8.55a 8.69a 8.77a 8.74a 8.79a 8.91a
4 6.61b 7.96a 8.10a 8.16a 8.24a 8.19a 8.30a 8.40a
5 6.27b 7.41a 7.61a 7.65a 7.75a 7.68a 7.79a 7.85a
6 5.76b 6.85a 6.87a 6.95a 6.96a 6.92a 7.08a 7.09a
7 5.54b 6.44a 6.45a 6.55a 6.64a 6.59a 6.72a 6.76a
8 5.25b 6.15a 6.18a 6.29a 6.47a 6.31a 6.56a 6.60a
9 5.04b 6.10a 6.12a 6.16a 6.29a 6.19a 6.32a 6.33a
10 4.79b 5.76a 5.79a 5.83a 5.86a 5.86a 5.95a 5.97a
11 4.69b 5.46a 5.51a 5.52a 5.56a 5.54a 5.72a 5.86a
12 4.48b 5.09a 5.10a 5.19a 5.22a 5.19a 5.51a 5.52a
13 4.09d 4.65c 4.66c 4.78bc 5.01abc 4.93abc 5.26ab 5.35a

Table 4

Effects of ECK treatments on dry weight of internodes per unit length of foxtail millet g/cm"

节间
Internode
单位长度节间干重Dry weight of internodes per unit length
CK TR1 TR2 TR3 TR4 TR5 TR6 TR7
2 83.74b 127.84a 130.01a 135.23a 138.86a 142.48a 147.13a 154.02a
3 73.25c 84.97b 86.32b 89.28b 89.58b 94.66b 95.76b 106.55a
4 64.96c 76.43bc 82.28ab 85.87ab 89.40ab 89.44ab 91.51a 95.58a
5 58.30d 68.08c 70.89bc 72.58bc 77.72b 78.96b 87.13a 90.12a
6 56.85d 65.10cd 67.09bc 67.88bc 71.21bc 71.75bc 75.92ab 83.76a
7 46.91e 55.85d 57.80cd 60.38bcd 64.82abc 65.27abc 66.96ab 71.85a
8 44.66d 53.52c 53.67c 54.52c 57.24bc 58.56bc 65.06ab 68.55a
9 41.63b 46.58b 49.67b 51.78b 52.39b 51.16b 66.19a 68.18a
10 38.24c 44.28bc 45.16bc 46.47bc 49.06bc 50.29b 65.60a 63.97a
11 35.77c 40.77bc 39.87bc 42.58bc 45.62b 45.43b 54.18a 56.68a
12 33.69c 37.46cd 37.62cd 39.86bcd 43.44abc 42.60abc 47.90ab 50.42a
13 26.36c 31.50cd 32.51bcd 32.82bcd 37.74abc 37.51abc 39.51ab 43.55a

Table 5

Effects of ECK treatments on internode bending resistance of foxtail millet N"

节间
Internode
节间抗折力Internode bending resistance
CK TR1 TR2 TR3 TR4 TR5 TR6 TR7
2 36.35b 41.39a 43.20a 44.53a 46.14a 45.32a 46.00a 46.71a
3 24.03c 39.08b 41.37ab 42.53ab 44.36ab 45.29a 45.31a 46.22a
4 17.89b 27.80ab 29.45ab 31.56a 36.64a 33.21a 39.18a 41.40a
5 14.28c 19.36bc 20.74bc 23.64abc 27.66ab 27.09ab 32.05a 32.37a
6 13.05b 18.57a 19.91a 20.97a 22.54a 21.76a 22.95a 23.43a
7 13.06b 18.65ab 19.13a 20.08a 21.44a 20.61a 22.60a 23.28a
8 13.18c 16.15bc 17.00ab 18.65ab 20.46a 17.40ab 19.26ab 20.25a
9 13.17c 14.38bc 14.44bc 15.26abc 16.57abc 19.01ab 19.47a 19.66a
10 13.25c 14.51bc 15.03abc 16.67abc 17.23abc 20.45ab 20.99a 20.26ab
11 13.10b 15.40ab 15.61ab 15.69ab 16.05ab 16.72ab 19.46a 20.63a
12 12.60c 14.52bc 15.17bc 16.81b 14.68bc 16.82b 24.73a 24.98a
13 12.14d 14.64d 15.05d 15.97cd 16.41cd 20.53bc 24.66b 34.07a

Fig.3

Effects of ECK treatments on the cellulose content in the second internode of stem of foxtail millet"

Fig.4

Effects of ECK treatments on the hemicellulose content of foxtail millet"

Fig.5

Effects of ECK treatment on the lignin content of foxtail millet"

Table 6

Correlation analysis between agronomic traits and lodging resistance of foxtail millet stems"

指标
Index
倒伏率
Lodging
rate
倒伏指数
Lodging
index
株高
Plant
height
重心高度
Height of
gravity center
节间长度
Internode
length
茎粗
Internode
diameter
单位长度节间干重
Dry weight per
unit length
抗折力
Snapping
resistance
倒伏率Lodging rate 1.000
倒伏指数Lodging index 0.934** 1.000
株高Plant height 0.848** 0.929** 1.000
重心高度Height of gravity center 0.967** 0.970** 0.951** 1.000
节间长度Internode length 0.913** 0.774* 0.654 0.840** 1.000
茎粗Internode diameter -0.928** -0.790* -0.697 -0.869** -0.942** 1.000
单位长度节间干重Dry weight per unit length -0.985** -0.933** -0.859** -0.971** -0.924** 0.942** 1.000
抗折力Snapping resistance -0.979** -0.870** -0.741* -0.912** -0.962** 0.968** 0.969** 1.000

Table 7

Correlation analysis of hemicellulose, cellulose and lignin contents and lodging resistance of foxtail millet stems"

指标
Index
半纤维素含量
Hemicellulose content
纤维素含量
Cellulose content
木质素含量
Lignin content
倒伏率
Lodging rate
倒伏指数
Lodging index
抗折力
Snapping resistance
半纤维素含量Hemicellulose content 1.000
纤维素含量Cellulose content -0.032 1.000
木质素含量Lignin content 0.522 0.685 1.000
倒伏率Lodging rate -0.828* 0.252 -0.428 1.000
倒伏指数Lodging index -0.883** 0.089 -0.59 0.934** 1.000
抗折力Snapping resistance 0.755* -0.423 0.256 -0.979** -0.870** 1.000

Fig.6

Effects of ECK treatments on foxtail millet yield"

Table 8

Effects of ECK treatments on the components of foxtail millet yield"

年份
Year
处理
Treatment
穗数
Ear number
(/hm2)
穗粒数
Grain number
per panicle
千粒重
1000-grain
weight (g)
2020 CK 754 704.60a 4055.95a 2.80b
TR1 794 223.75a 4333.44a 3.10a
TR2 811 435.65a 4070.25a 3.12a
TR3 831 236.85a 4077.54a 3.15a
TR4 856 376.55a 4290.62a 2.85ab
TR5 849 743.70a 4183.01a 3.12a
TR6 862 092.15a 4705.77a 2.87ab
TR7 845 471.25a 4413.03a 3.07ab
2021 CK 628 802.25b 2692.72a 2.77d
TR1 639 319.50b 3228.10a 2.91a
TR2 721 867.05ab 3372.47a 2.83c
TR3 741 634.50ab 2845.19a 2.84bc
TR4 674 326.80ab 3332.93a 2.81cd
TR5 765 869.40ab 2728.41a 2.89ab
TR6 792 019.50a 3469.89a 2.93a
TR7 723 828.45ab 2776.04a 2.83c
[1] 何红中, 惠富平. 古粟(Setaria italica Beauv.)研究综述. 中国粮油学报, 2010, 25(4):121-128.
[2] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52(22):3943-3949.
doi: 10.3864/j.issn.0578-1752.2019.22.001
[3] 王莉芳, 李鹏伟. 旱地谷子高产栽培技术. 种子科技, 2020, 38(15):23-24.
[4] 赵术伟, 王凯玺, 吕阳芹. 辽宁省制约谷子产业化发展的主要因素及对策. 杂粮作物, 2009, 29(2):153-154.
[5] 马晓君, 路明远, 邢春景, 等. 群体密度对夏玉米穗下茎秆性状及抗倒伏力学特性的影响. 玉米科学, 2018, 26(4):118-125.
[6] 李鸿, 周茂林, 李晔, 等. 种植密度对重庆地区玉米产量及茎秆强度的影响. 作物研究, 2021, 35(1):22-27.
[7] 徐韶, 贾德涛, 韩彦龙, 等. 种植密度对玉米茎秆力学特性和农艺性状的影响. 种子科技, 2020, 38(17):11-13,16.
[8] 袁志华, 冯宝萍, 赵安庆, 等. 作物茎秆抗倒伏的力学分析及综合评价探讨. 农业工程学报, 2002, 18(6):30-31.
[9] 汪清焰, 刘斌美, 杨阳, 等. 水稻脆茎突变体细胞壁组分与茎秆力学性能的研究. 生物学杂志, 2020, 37(1):26-29.
[10] Ghasemi E, Ghorbani G R, Khorvash M, et al. Chemical composition cell wall features and degradability of stem leaf blade and sheath in untreated and alkali-treated rice straw. Animal, 2013, 7(7):1106-1112.
doi: 10.1017/S1751731113000256 pmid: 23473105
[11] 贾小平, 董普辉, 张红晓, 等. 不同谷子品种(系)生长发育特性及抗倒性分析. 河南农业科学, 2015, 44(8):27-31.
[12] 袁立新. 谷子株型对茎秆倒伏影响的研究. 吉林农业科学, 1998(4):38-39,55.
[13] 代小冬, 杨育峰, 陈煜, 等. 施肥对谷子农艺性状、产量及抗倒伏能力的影响. 河南农业科学, 2014, 43(10):47-52.
[14] 鱼冰星, 王宏富, 王振华, 等. 多效唑对谷子茎秆特征及抗倒性的影响. 中国农业科技导报, 2021, 23(8):37-44.
[15] 郭慧明. 大田作物化控技术研究进展与应用前景分析. 山西农经, 2017(4):64.
[16] 韩永康, 王树勋, 肖炳麟, 等. 作物化控技术的应用效果及发展前景. 全国农业优化种植结构发展优质高效农产品学术讨论会文集. 北京: 中国农业科技出版社, 2000:132-136.
[17] 郭丽红, 王定康, 杨晓虹, 等. 外源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响. 云南大学学报(自然科学版), 2004, 26(4):352-356.
[18] 王宇先, 李清泉, 赵蕾, 等. 谷子矮化处理对倒伏性状及产量的影响. 黑龙江农业科学, 2016(11):23-25.
[19] 薛金涛, 张保明, 董志强, 等. 化学调控玉米抗倒及产量性状的效应研究. 作物杂志, 2008(4):72-76.
[20] 李玲, 赵明, 李连禄, 等. 乙矮合剂对玉米产量和茎秆质量的影响. 作物杂志, 2007(5):51-54.
[21] 卢霖, 董志强, 董学瑞, 等. 乙矮合剂对不同密度夏玉米茎秆抗倒伏能力及产量的影响. 作物杂志, 2015(2):70-77.
[22] Soest P J V. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of Aoac International, 1990, 73(4):491-497.
doi: 10.1093/jaoac/73.4.491
[23] 贾小平, 董普辉, 张红晓, 等. 谷子抗倒伏性和株高、穗部性状的相关性研究. 植物遗传资源学报, 2015, 16(6):1188-1193.
doi: 10.13430/j.cnki.jpgr.2015.06.008
[24] 肖世和, 张秀英, 闫长生, 等. 小麦茎秆强度的鉴定方法研究. 中国农业科学, 2002, 35(1):7-11.
[25] 刘振宇, 于肖, 秦岭, 等. 乙烯利和矮壮素螯合生长调节剂对谷子农艺和产量性状的影响. 山东农业科学, 2021, 53(3):29-35.
[26] 武翠卿, 孙静鑫, 郭平毅, 等. 农艺措施对谷子产量及抗倒伏力学性能的影响. 中国农业科学, 2021, 54(6):1127-1142.
doi: 10.3864/j.issn.0578-1752.2021.06.005
[27] 杜艳伟, 赵晋锋, 王高鸿, 等. 春播谷子成熟期抗倒伏性研究. 作物杂志, 2019(1):141-145.
[28] Sindhu A, Langewisch T, Olek A, et al. Maize brittle stalk2 encodes a cobra-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiology, 2007, 145(4):1444-1459.
doi: 10.1104/pp.107.102582 pmid: 17932309
[29] Jiao S, Hazebroek J P, Chamberlin M A, et al. Chitinase-like1 plays a role in stalk tensile strength in maize. Plant Physiology, 2019, 181(3):1127-1147.
doi: 10.1104/pp.19.00615 pmid: 31492738
[30] Berry P M, Spink J, Sterling M, et al. Methods for rapidly measuring the lodging resistance of wheat cultivars. Journal of Agronomy and Crop Science, 2003, 189(6):391-401.
[31] Kong E Y, Liu D C, Guo X L, et al. Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 2013, 1(1):43-49.
doi: 10.1016/j.cj.2013.07.012
[32] 高源, 梁斌, 隋方功, 等. 喷施胺鲜酯对不同种植密度夏玉米抗倒伏性状及产量的影响. 青岛农业大学学报(自然科学版), 2016, 33(4):255-260.
[33] 樊海潮, 顾万荣, 杨德光, 等. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响. 作物学报, 2018, 44(6):909-919.
doi: 10.3724/SP.J.1006.2018.00909
[34] 陈晓光, 史春余, 尹燕枰, 等. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37(9):1616-1622.
[35] 鱼冰星, 王宏富, 杨净, 等. 多效唑和乙烯利对谷子穗颈、穗部性状及灌浆的影响. 核农学报, 2019, 33(6):1199-1207.
doi: 10.11869/j.issn.100-8551.2019.06.1199
[36] 禤维言, 张涛, 黄永禄, 等. 喷施多效唑对甜高粱生长及生理特性的影响. 作物杂志, 2011(5):73-76.
[37] 黄英杰, 张岩. 谷子品种产量及主要产量构成因素稳定性的分析. 作物杂志, 2002(5):43-44.
[1] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[2] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[3] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[4] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[5] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[6] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[7] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[8] Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223.
[9] Zhao Lijie, Zhao Haiyan, Han Genlan, Wang Jiang, Nie Mengʼen, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen Fertilizer Combined with Organic Fertilizer on Quality of Millet [J]. Crops, 2023, 39(6): 224-232.
[10] Shen Tianyu, Wang Yuan, Dong Erwei, Wang Jinsong, Liu Qiuxia, Jiao Xiaoyan. Effects of Nitrogen and Delayed Harvest on Foxtail Millet Yield and Grain Quality [J]. Crops, 2023, 39(6): 233-242.
[11] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[12] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[13] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[14] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[15] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!