Crops ›› 2021, Vol. 37 ›› Issue (3): 91-98.doi: 10.16035/j.issn.1001-7283.2021.03.014

Previous Articles     Next Articles

Effects of Reducing Phosphorus Application in High-P Soils on the P Efficiency of Chewing Cane and Soil Enzyme Activity

Wu Qihua1(), Chen Diwen1, Zhou Wenling1, Ao Junhua1, Huang Ying1, Huang Zhenrui2(), Li Shuang1, Sun Donglei1   

  1. 1Institute of Bioengineering, Guangdong Academy of Sciences/Guangdong Modern Agricultural Technology Research and Development Center (Resources and Environment and Agricultural Product Safety), Guangzhou 510316, Guangdong, China
    2Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetics and Improvement, Guangzhou 510640, Guangdong, China
  • Received:2020-07-08 Revised:2020-10-26 Online:2021-06-15 Published:2021-06-22
  • Contact: Huang Zhenrui E-mail:wqh5859@126.com;fjsi@163.com

Abstract:

In pursuit of high economic benefits, the excessive input of P fertilizer is common in the cultivation of chewing cane resulting in some problems such as the imbalance of soil fertility and reduction of fertilizer efficiency. In the high phosphorus (P) red soil area of Zhanjiang, Guangdong province, the initial soil available P was as high as 234.80mg/kg. Field positioning experiments were carried out to study the characteristics of chewing cane P utilization, and soil enzyme activities after continuous different P reduction measures reducing P of 100% (P0), 50% (P1), 20% (P2), and local customary P application (CK, 600kg P2O5/ha). The results showed that under different P application levels for two consecutive years, the yield, as well as quality traits of sugar content, plant height, and stem diameter of chewing cane were P2 > CK > P1 > P0. Among all P applied treatments, the P use efficiency was the highest in P2, with a value of 32.09%, and the lowest in P1 treatment, with a value of 28.08%. The agronomic efficiency was P2 > P1 > CK. The partial productivity of P was P1 > P2 > CK. As the decrease of P application level, the activities of α-glucosidase and redox-related enzymes, peroxidase and polyphenol oxidase increased; the activities of hydrolases such as enzymes associated with carbon conversion, β-glucosidase, cellobiohydrolase and N-acetylglucosaminidase and phosphatases, decreased; and the activities of leucine aminopeptidase and urease were the highest in P0 treatment and the lowest in P2 treatment. Besides, soil enzyme activity was closely related to soil nutrients, and the correlation was significant (P < 0.05). In combination with the yield, quality of chewing cane, P use efficiency, the soil enzyme activity, and the effects on cane reduction of P fertilizer by 20% could be the recommended amount of P for chewing cane in this region.

Key words: Chewing cane, Yield and quality, P use efficiency, Soil enzyme activity, P application levels, Red soil

Table 1

The yield and quality characteristics of chewing cane under different P fertilizer levels"

处理Treatment 产量
Yield
(t/hm2)
糖分
Sugar content
(%)
株高
Plant height
(cm)
茎径
Stem diameter
(mm)
P0 66.9c 11.5a 185.5c 33.5b
P1 94.7b 12.0a 215.7b 34.9ab
P2 112.5a 12.1a 232.4a 36.2a
CK 107.6a 12.0a 228.7a 35.6a

Table 2

The phosphorus efficiency under different P fertilizer levels"

处理
Treatment
磷肥利用率
P use efficiency
(%)
农学效率
Agronomic
efficiency (kg/kg)
偏生产力
Partial factor
productivity (kg/kg)
P0
P1 28.08a 92.67a 315.67a
P2 32.09a 95.06a 234.44b
CK 28.64a 67.83b 179.33c

Table 3

The cumulative nutrient budget under different P fertilizer levels kg/hm2"

处理
Treatment
养分总输入Total nutrient input 养分总输出Total nutrient output 养分表观盈余Cumulative nutrient budget
N P2O5 K2O N P2O5 K2O N P2O5 K2O
P0 1500 0 1350 309.0c 289.1c 853.4d 1191.0a -289.1d 496.6a
P1 1500 600 1350 539.2b 390.9b 1012.6c 960.8b 209.1c 337.4b
P2 1500 960 1350 684.1a 514.6a 1251.7a 815.9c 445.4b 98.3d
CK 1500 1200 1350 650.6a 491.9a 1177.8b 849.4c 708.1a 172.2c

Table 4

Changes in soil properties under different P fertilizer levels"

处理
Treatment
pH 有机碳
Organic C (g/kg)
全氮
Total N (g/kg)
全磷
Total P (g/kg)
全钾
Total K (g/kg)
碱解氮
Alkali hydrolysis N (mg/kg)
速效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
P0 4.29b 12.39a 0.98a 1.04b 2.88a 112.09a 222.73b 123.67a
P1 4.20b 12.51a 0.95a 1.56a 2.85a 86.38b 300.24a 113.33a
P2 4.50ab 12.77a 0.87a 1.67a 2.74a 68.30c 308.08a 99.00b
CK 4.79a 12.94a 0.90a 1.71a 2.77a 78.86b 322.30a 108.67a

Fig.1

Changes of soil enzymes associated with carbon conversion Different lowercase letters indicate significant differences between treatments (P<0.05), the same below"

Fig.2

Changes of soil enzymes associated with nitrogen and phosphorus conversion"

Fig.3

Changes of soil redox-related enzyme activities"

Table 5

Correlation analysis between soil enzyme activities and soil physical and chemical properties chewing cane yield and P fertilizer use efficiency"

土壤酶
Soil enzyme
pH 有机碳
Organic C
全氮
Total N
全磷
Total P
全钾
Total K
有效氮
Available N
有效磷
Available P
有效钾
Available K
产量
Yield
磷肥利用率
P use efficiency
AG 0.489 -0.972* 0.719 -0.766 0.916* 0.653 -0.688 0.582 -0.745 0.022
BG -0.618 0.905* -0.583 0.753 -0.833 -0.577 0.726 -0.461 0.683 -0.319
CBH -0.425 0.981** -0.753 0.751 -0.939* -0.662 0.655 -0.610 0.749 0.082
BX -0.508 0.945* -0.971* 0.921* -0.712 -0.942* 0.813 -0.925* 0.966* 0.638
NAG -0.678 0.967* -0.797 0.915* -0.776 -0.812 0.865 -0.721 0.884 -0.025
LAP 0.830 -0.713 0.794 -0.978* 0.301 0.949* -0.976* 0.863 -0.953* -1.000**
URE 0.704 -0.416 0.678 -0.818 -0.054 0.872 -0.829 0.825 -0.823 -0.544
APE -0.809 0.835 -0.834 1.000** -0.483 -0.946* 0.979** -0.856 0.973* 0.316
POD 0.652 -0.918* 0.620 -0.794 0.816 0.626 -0.767 0.509 -0.727 0.305
PPO 0.372 -0.991** 0.900* -0.808 0.889 0.798 -0.680 0.786 -0.852 -0.409

Table 6

Decomposition of the simple correlation coefficient between activity of APE with the contents of total P, available P and available N"

指标
Index
简单相关系数
Simple correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数Indirect path coefficient
全磷Total P 有效磷Available P 有效氮Available N 合计Sum
全磷Total P 1.000 0.953 0.066 -0.019 0.047
有效磷Available P 0.979 0.068 0.929 -0.018 0.911
有效氮Available N -0.946 0.020 -0.906 -0.060 -0.966
[1] 吴松海, 何云燕, 郑家祯 , 等. 福建省果蔗产业现状及发展对策. 福建农业科技, 2013(12):62-63.
[2] 敖俊华, 江永, 黄振瑞 , 等. 加强甘蔗养分管理,降低甘蔗生产成本. 广东农业科学, 2011,38(23):31-34.
[3] 谢如林, 谭宏伟, 周柳强 , 等. 不同氮磷施用量对甘蔗产量及氮肥、磷肥利用率的影响. 西南农业学报, 2012,25(1):198-202.
[4] 吴良泉, 武良, 崔振岭 , 等. 中国玉米区域氮磷钾肥推荐用量及肥料配方研究. 土壤学报, 2015,52(4):802-817.
[5] Ma L, Velthof G L, Wang F H , et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Science of the Total Environment, 2012,434:51-61.
doi: 10.1016/j.scitotenv.2012.03.028
[6] Wang R, Yao Z, Lei Y . Modeling of soil available phosphorus surplus in an intensive wheat-maize rotation production area of the North China Plain. Agriculture,Ecosystems and Environment, 2019,269:22-29.
doi: 10.1016/j.agee.2018.09.023
[7] Syers J K, Johnston A E, Curtin D . Efficiency of soil and fertilizer phosphorus use:reconciling changing concepts of soil phosphorus behaviour with agronomic information. Food and Agriculture Organization of the United Nations, 2008.
[8] Thornton M K, Novy R G, Stark J C . Improving phosphorus use efficiency in the future. American Journal of Potato Research, 2014,91(2):175-179.
doi: 10.1007/s12230-014-9369-9
[9] 刘小锋, 张桥, 张新明 , 等. 广东省果蔗施肥状况典型调查与分析. 安徽农学通报, 2012,18(11):95-97.
[10] 薛冬, 姚槐应, 何振立 , 等. 红壤酶活性与肥力的关系. 应用生态学报, 2005(8):1455-1458.
[11] 荣勤雷, 梁国庆, 周卫 , 等. 不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响. 植物营养与肥料学报, 2014,20(5):1168-1177.
[12] 周礼恺, 张志明, 曹承绵 . 土壤酶活性的总体在评价土壤肥力水平中的作用. 土壤学报, 1983(4):413-418.
[13] 刘善江, 夏雪, 陈桂梅 , 等. 土壤酶的研究进展. 中国农学通报, 2011,27(21):1-7.
[14] 武晓森, 周晓琳, 曹凤明 , 等. 不同施肥处理对玉米产量及土壤酶活性的影响. 中国土壤与肥料, 2015(1):44-49.
[15] Chen G F, Liu Z, Huang Y , et al. Effects of different fertilization treatments on soil microbial biomass,soil enzyme activities and related nutrients in continuous-cropping sugarcane field. Agricultural Science and Technology, 2017,2(18):256-261,324.
[16] 罗燕, 樊卫国 . 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性. 中国农业科学, 2014,47(5):955-967.
[17] 徐明岗, 梁国庆 . 中国土壤肥力演变. 北京: 中国农业科学技术出版社, 2006:73-90.
[18] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
[19] Deforest J L . The influence of time,storage temperature,and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biology and Biochemistry, 2009,41(6):1180-1186.
doi: 10.1016/j.soilbio.2009.02.029
[20] 王秀斌, 徐新朋, 孙刚 , 等. 氮肥用量对双季稻产量和氮肥利用率的影响. 植物营养与肥料学报, 2013,19(6):1279-1286.
[21] 黄振才, 丘伟兴 . 氮、磷、钾不同施肥水平对果蔗产量与糖分的影响. 安徽农学通报, 2006(2):38,69.
[22] 谭显平, 周英明, 陈政 , 等. 不同用量无机底肥对果蔗产量和品质影响的研究(一). 甘蔗糖业, 2010(6):11-13.
[23] 樊仙, 张跃彬, 郭兆建 , 等. 不同施肥量对甘蔗产量的效应研究. 中国糖料, 2015,37(5):22-23.
[24] 李明松, 张洪梅, 朱平 , 等. 不同施肥处理对农田黑土土壤酶活性的影响. 玉米科学, 2017,25(5):116-121.
[25] 邱莉萍, 刘军, 王益权 , 等. 土壤酶活性与土壤肥力的关系研究. 植物营养与肥料学报, 2004,10(3):277-280.
[26] 曹慧, 孙辉, 杨浩 , 等. 土壤酶活性及其对土壤质量的指示研究进展. 应用与环境生物学报, 2003(1):105-109.
[27] 陈波浪, 蒋平安, 盛建东 . 磷肥对棉田土壤有效磷及土壤酶活性的影响. 土壤通报, 2014,45(1):185-188.
[28] 李增强, 张贤, 王建红 , 等. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响. 植物营养与肥料学报, 2019,25(4):525-534.
[29] Sinsabaugh R L . Phenol oxidase,peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 2010,42(3):391-404.
doi: 10.1016/j.soilbio.2009.10.014
[30] 贾伟, 周怀平, 解文艳 , 等. 长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响. 植物营养与肥料学报, 2008,14(4):700-705.
[31] 刘建新 . 不同农田土壤酶活性与土壤养分相关关系研究. 土壤通报, 2004,35(4):523-525.
[32] 胡诚, 刘东海, 乔艳 , 等. 施用生物有机肥对土壤酶活性及作物产量的影响. 华北农学报, 2017(32):308-312.
[33] 刘广深, 徐冬梅, 许中坚 , 等. 用通径分析法研究土壤水解酶活性与土壤性质的关系. 土壤学报, 2003(5):756-762.
[34] 刘庆新, 吴发启, 刘海斌 , 等. 纸坊沟流域土壤酶活性与土壤肥力关系研究. 植物营养与肥料学报, 2009,15(5):1100-1106.
[1] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[2] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[3] Yang Yongqing, Gao Fangfang, Ma Yajun, Chen Xin, Zhang Jie. Effects of Different Fertilizer Treatments on Yield, Quality and Economic Benefit of Foxtail Millet in Dry Farming Area of Shanxi Province [J]. Crops, 2020, 36(4): 195-201.
[4] Yaning Wang,Jinpeng Yang,Chunlei Yang,Fangsen Xu,Xiang Zhang,Liang Li. Effects of Well-Cellar Transplanting with Triangulation on Growth, Development,Yield and Quality of Burley Tobacco [J]. Crops, 2018, 34(3): 116-122.
[5] Jingang Liang,Zhengguang Zhang. Advance on Effects of Genetically ModifiedCrops on Soil Ecosystems [J]. Crops, 2017, 33(4): 1-6.
[6] Song Li,Yibo He,Manman Lu,Hongjian Liu,Junxian Liu,Limin Liu,Kunxing Yu,Xin Liu. Effects of Planting Density on Yield Traits and Commercial Characters of Guiguozhe No.1 [J]. Crops, 2017, 33(4): 78-83.
[7] Qiang Hu,Baofeng Jin,Pufan Zheng,Fucai Chen,Sitong Li,Kailun Mao,Hailun Liu,Yonghong Tang,Lixin Zhang. Effects of Exogenous GA3 and IAA on Quality of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi Province [J]. Crops, 2016, 32(6): 135-141.
[8] Minghui Chen,Zhilu Zhang,Shiping Cheng,Xing Huang,Baoqing Zhang. Effects of Low Temperature Stress on Lipid Peroxidation and Osmotic Regulation Substances of Chewing Cane Seedlings [J]. Crops, 2016, 32(6): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!