Crops ›› 2022, Vol. 38 ›› Issue (1): 31-37.doi: 10.16035/j.issn.1001-7283.2022.01.004

Previous Articles     Next Articles

Core Collection Construction of Extra-Early Restorer Lines in Spring Brassica napus L.

Lin Xiaoyang(), Du Dezhi, Liu Haidong(), Li Jun   

  1. Academy of Agricultural and Forestry Sciences of Qinghai University/Key Laboratory of Spring Rapeseed Genetic Improvement/The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center/ Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Affairs/Qinghai Research and Development Center for Spring Rapeseed/Qinghai Province Spring Rape Engineering Technology Research Center, Xining 810016, Qinghai, China
  • Received:2021-08-14 Revised:2021-09-30 Online:2022-02-15 Published:2022-02-16
  • Contact: Liu Haidong E-mail:1097353109@qq.com;dahaima@163.com

Abstract:

In order to better evaluate and utilize the germplasm resources of extra-early restorer lines of spring Brassica napus L., to reduce the workload of selecting hybrid combinations of restorer lines and sterile lines in breeding work, and service for hybrids selection and breeding, this paper analyzes the population genetic relationships of Pol cytoplasmic male sterility by specific-locus amplified sequencing (SLAF-seq) of 97 restorer lines and developing SNP markers. Core Hunter software was used to construct a core collection. The results showed that a total of 527 872 SLAF tags and 842 248 effective SNPs were obtained. Through the effective SNP cluster analysis of 97 lines, these materials were divided into five categories. Two core collections of C30 (29 lines) and C40 (38 lines) were constructed. The coverage of alleles of C30 core collection was 99.89%, while that of C40 was 99.96%. These materials could represent the degree of variation of the entire resources, which met the requirements for constructing core collection.

Key words: Extra-early maturity, Brassica napus L., Core collection, Pol cytoplasmic male sterility

Fig.1

SLAF tags distribution on chromosome Each band represents a chromosome. The genome is divided based on the size of 1Mb. The more SLAF tags in each window, the darker the color, the smaller SLAF tags, the lighter the color. The darker areas, the higher concentrated SLAF tags are, and the labels are evenly distributed on the chromosomes"

Table 1

Chromosome distribution of SLAF tags and polymorphic SLAF tags"

染色体
Chromosome
SLAF数
SLAF number
多态性SLAF数
Polymorphic SLAF number
染色体
Chromosome
SLAF数
SLAF number
多态性SLAF数
Polymorphic SLAF number
chrA01 16 540 6 629 chrC01 31 295 9 062
chrA02 21 567 8 054 chrC02 26 489 8 595
chrA03 23 217 9 636 chrC03 44 131 11 733
chrA04 12 122 4 884 chrC04 38 357 10 745
chrA05 15 892 6 467 chrC05 35 626 10 594
chrA06 17 657 7 881 chrC06 26 267 7 076
chrA07 15 735 6 586 chrC07 33 526 9 586
chrA08 13 345 4 575 chrC08 31 750 9 310
chrA09 26 310 10 320 chrC09 38 570 9 385
chrA10 12 578 5 409 染色体C Total ChrC 306 011 86 086
染色体A Total ChrA 174 963 70 441

Fig.2

SNP distribution on chromosome Each band represents a chromosome. The genome is divided based on the size of 1Mb. The more SNP in each window, the darker the color, the smaller SNP, the lighter the color. The darker areas, the higher SNP concentrated in areas"

Fig.3

NJ phylogenetic tree of Brassica napus L. restorer based on SLAF-seq"

Table 2

Genetic distances of the top 10 restorer lines in Brassica napus L."

排名Ranking 材料间Between materials 遗传距离Genetic distance
1 16D3-86 0.6628
2 86-49 0.6617
3 49-44 0.6577
4 58-49 0.6433
5 16D3-44 0.6428
6 78-10 0.6424
7 16D3-58 0.6421
8 78-35 0.6363
9 49-12 0.6248
10 86-67 0.6229

Fig.4

Clustering map of C30 core collection Each circle is a category, the same below"

Fig.5

Clustering map of C40 core collection"

Table 3

Evaluation on core germplasm of restorer lines of spring Brassica napus L."

方法
Method
子集
Subset
原始种质
Initial collection
核心种质数量
Core collection number
MR MRmin CE CEmin SH HE NE PIC PN
(%)
CV
(%)
Core Hunter (30%) C30 97 29 0.47 0.15 0.48 0.16 11.35 0.33 1.54 0.20 0.11 99.89
Core Hunter (40%) C40 97 38 0.47 0.15 0.48 0.16 11.35 0.33 1.54 0.29 0.04 99.96
[1] 张亚妮, 姚艳梅. 118份春性甘蓝型油菜恢复系的桔红花色位点鉴定. 分子植物育种, 2020, 18(6):1893-1900.
[2] 尹中江, 关卫星, 杨勇, 等. 育种平台(软件)在西藏作物育种中应用和西藏育种方向浅析. 西藏农业科技, 2020, 42(2):46-51.
[3] 张鹤. 油菜表型精准鉴定及优良种质筛选. 杨凌:西北农林科技大学, 2019.
[4] 潘云龙, 柳海东. 甘蓝型春油菜早花位点cqDTFA7a加密及其近等基因系构建. 分子植物育种, 2019, 17(21):7047-7057.
[5] 姚艳梅, 徐亮, 胡琼, 等. 青海省几个主要春性甘蓝型油菜杂交种的SSR分析. 中国油料作物学报, 2008, 30(4):406-410.
[6] 傅廷栋, 杨小牛. 甘蓝型油菜波里马雄性不育系的选育与研究. 华中农业大学学报, 1989, 8(3):7.
[7] 丁厚栋, 张尧锋, 余华胜, 等. 甘蓝型油菜种质资源的农艺性状聚类分析. 华北农学报, 2009, 24(S1):103-105.
[8] 李自超, 张洪亮, 曹永生, 等. 中国地方稻种资源初级核心种质取样策略研究. 作物学报, 2003, 29(1):20-24.
[9] 王丽侠, 李英慧, 李伟, 等. 长江春大豆核心种质构建及分析. 生物多样性, 2004(6):578-585.
[10] 郝晨阳, 董玉琛, 王兰芬, 等. 我国普通小麦核心种质的构建及遗传多样性分析. 科学通报, 2008(8):908-915.
[11] 李强, 马代夫, 刘庆昌, 等. 中国北方薯区甘薯育种核心亲本初步构建与利用. 西北农业学报, 2010, 19(12):48-52.
[12] 曾晓珊, 彭丹, 石媛媛, 等. 利用SSR标记构建水稻核心亲本指纹图谱. 作物研究, 2016, 30(5):481-486,511.
[13] 杨勇. 甘蓝型油菜遗传多样性分析及核心亲本的指纹图谱构建. 武汉:华中农业大学, 2013.
[14] Schoen D J, Brown A H. Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(22):10623-10627.
[15] Chris T, José C, Jorge F, et al. Core Hunter:an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics, 2009, 10(1):243.
doi: 10.1186/1471-2105-10-243
[16] 杜德志, 肖麓, 赵志, 等. 我国春油菜遗传育种研究进展. 中国油料作物学报, 2018, 40(5):633-639.
[17] Kozich J J, Westcott S L, Baxter N T, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeqIllumina sequencing platform. Applied and Environmental Microbiology, 2013, 79(17):5112-5120.
doi: 10.1128/AEM.01043-13 pmid: 23793624
[18] Li R, Yu C, Li Y, et al. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25(15):1966-1967.
doi: 10.1093/bioinformatics/btp336
[19] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324
[20] McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9):1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[21] Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16):2078-2079.
doi: 10.1093/bioinformatics/btp352
[22] 唐晓敏, 张春荣, 周良云, 等. 基于SLAF-Seq技术的广金钱草SNP位点开发及遗传分析. 分子植物育种, 2020, 18(18):6101-6107.
[23] 赵绪涛, 柳海东, 李开祥, 等. 基于SLAF-seq技术构建甘蓝型油菜Polima CMS恢复系核心种质. 中国油料作物学报, 2019, 41(4):497-506.
[24] Kumar S, Glen S, Li M, et al. MEGA X:molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6):1547-1549.
doi: 10.1093/molbev/msy096
[25] 邓念丹, 刘清波, 蒋建雄, 等. 五节芒核心种质的构建研究概述. 作物研究, 2010, 24(2):130-134.
[26] 陈敬锋, 马金霞. 分子水平建议核心种质的算法初探. 新疆农业大学学报, 2001(2):26-29.
[27] 何余堂, 涂金星, 傅廷栋, 等. 陕西省白菜型油菜核心种质的初步构建. 中国油料作物学报, 2002(1):7-10.
[28] 姚艳梅, 唐国永. 特早熟春性甘蓝型油菜青杂8号的选育. 青海大学学报(自然科学版), 2015, 33(6):13-17,54.
[29] 管传禧. 甘蓝型油菜早熟育种的体会. 安徽农业科学, 1984(1):46-49.
[30] 杜德志, 李秀萍, 余青兰, 等. 特早熟双低甘蓝型油菜杂交种的选育. 西北农业学报, 2003(1):1-4.
[1] Lü Weisheng, Xiao Xiaojun, Huang Tianbao, Xiao Guobin, Li Yazhen, Xiao Fuliang, Han Depeng, Zheng Wei. Application Effect of Slow-Released Formulated Fertilizer on Oilseed Rape (Brassica napus L.) under Late Sowing Rice [J]. Crops, 2020, 36(6): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!