Crops ›› 2022, Vol. 38 ›› Issue (2): 195-202.doi: 10.16035/j.issn.1001-7283.2022.02.027

Previous Articles     Next Articles

Effects of Planting Patterns on Lodging Resistance and Yield of Zhangza 10 in Different Ecological Areas

Guo Yongxin(), Zhou Hao, Sun Peng, Wang Yaqing, Ma Ke, Li Xiaorui, Dong Shuqi, Guo Pingyi, Yuan Xiangyang()   

  1. College of Agriculture, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Taiyuan 030031, Shanxi, China
  • Received:2021-07-19 Revised:2021-11-06 Online:2022-04-15 Published:2022-04-24
  • Contact: Yuan Xiangyang E-mail:13835463712@163.com;yuanxiangyang200@163.com

Abstract:

In order to provide the theoretical basis for guiding lodging resistance and high yield cultivation of Zhangza 10, we explored the effects of planting patterns on lodging resistance and yield of foxtail millet in different ecological areas. The experiment was conducted in Dingxiang county, Taigu district, and Zezhou county of Shanxi province in 2020. Zhangza 10 was used as the test material and four kinds of planting patterns were set up, the film-covered hole seeding (MX), membrane side seeding (MT), bare ground hole seeding (LX) and bare field sowing (LT). The effects of different planting patterns on lodging resistance and yield of the first and second internodes of foxtail millet stem in different ecological areas were analyzed. The results showed that the plant height and the gravity center height of Zhangza 10 were higher in the mulching treatment compared to the bare soil treatment. In Dingxiang and Taigu, the first and second internode lodging indexes and internode length of MX treatment were the highest and the mechanical strength, internode fullness, lignin and cellulose contents of the first and second internodes of MT treatment were significantly higher than other treatments. The yield of Zhangza10 under different treatments showed the same trend of MX > MT > LX > LT, but there was no significant difference between MX and MT treatments. In Zezhou, the lodging index of the mulching treatment was significantly higher than that of the bare ground treatment. The mechanical strength, clam dry density and clam filling degree of the LT treatment were higher than that of other treatments; the contents of lignin and cellulose of the bare soil treatment was significantly higher than that of the film treatment. The yield of the bare ground treatment was higher than that of the mulching treatment, but there was no significant difference between LX and LT treatments. In summary, different planting patterns had a greater impact on the lodging related indicators and yield formation of Zhangza 10 in different ecological areas. In Dingxiang and Taigu, the suitable high-yield and lodging-resistant planting pattern of millet was the membrane side seeding and bare field sowing was the best planting pattern in Zezhou.

Key words: Foxtail millet, Planting pattern, Lodging, Yield

Table 1

Soil basal fertility in 0-20cm soil layer before sowing in different sites"

地点
Site
全磷
Total P
(g/kg)
全钾
Total K
(g/kg)
全氮
Total N
(g/kg)
速效钾
Available K
(mg/kg)
碱解氮
Alkaline-hydrolytic N
(mg/kg)
有效磷
Available P
(mg/kg)
有机质
Organic matter
(g/kg)
pH
定襄Dingxiang 0.49 19.88 0.97 134.10 33.98 13.80 15.61 8.22
太谷Taigu 0.77 22.81 1.04 103.60 32.19 9.28 20.74 8.72
泽州Zezhou 0.44 21.83 1.11 140.10 23.25 7.58 14.72 8.40

Fig.1

Diagrammatic sketch of different planting patterns"

Fig.2

Effects of different planting patterns on plant height and gravity center height of Zhangza 10 Different letters indicate significant difference among treatments at the same site (P < 0.05), the same below"

Table 2

Effects of different planting patterns on related indexes of the first internode of Zhangza 10 stem"

地点
Site
种植方式
Planting
pattern
倒伏指数
Lodging
index
机械强度
Mechanical
strength (N)
节间长度
Internode
length (cm)
茎粗
Stem diameter
(mm)
节间干密度
Clum dry density
(g/cm3)
节间充实度
Clum filling degree
(mg/cm)
定襄Dingxiang MX 69.18±3.51a 126.82±5.11bc 5.52±0.03a 10.01±0.04a 72.41±1.12b 227.10±3.04b
MT 54.80±2.06b 163.73±4.58a 5.41±0.04a 9.95±0.05a 86.92±1.29a 268.61±1.39a
LX 58.32±2.74b 116.79±3.98c 5.19±0.03b 9.03±0.15b 63.91±3.09c 162.40±3.16d
LT 55.33±1.89b 135.43±1.30b 5.18±0.12b 8.25±0.06c 69.14±2.06bc 173.87±5.38c
太谷Taigu MX 79.75±4.30a 79.39±1.43b 4.81±0.06a 9.37±0.15ab 74.84±1.98ab 201.22±1.94b
MT 72.72±2.44b 89.24±1.44a 4.71±0.06a 9.48±0.08a 78.49±1.76a 220.96±2.44a
LX 74.98±2.76ab 70.44±1.05c 4.37±0.03b 9.08±0.11b 70.61±1.36b 181.35±1.66d
LT 72.38±2.09b 76.29±1.22b 4.36±0.12b 9.11±0.04b 73.90±1.12ab 191.44±3.40c
泽州Zezhou MX 116.63±1.81a 51.09±0.84c 5.81±0.06b 8.06±0.03a 61.76±0.68c 123.45±0.68b
MT 111.98±5.22a 57.46±0.76c 5.92±0.06ab 7.82±0.10a 67.13±1.61b 127.10±0.55b
LX 77.55±0.75b 85.61±0.68b 5.97±0.03ab 8.06±0.07a 68.05±1.14b 137.21±1.08a
LT 75.60±0.74b 93.13±1.33a 6.05±0.06a 7.92±0.07a 72.36±0.96a 139.63±2.27a
方差分析Analysis of variance
地点Site (S) ** ** ** ** ** **
种植方式Planting pattern (P) ** ** ** ** ** **
地点×种植方式 (S×P) ** ** ** ** ** **

Table 3

Effects of different planting patterns on related indexes of the second internode of Zhangza 10 stem"

地点
Site
种植方式
Planting
pattern
倒伏指数
Lodging
index
机械强度
Mechanical
strength (N)
节间长度
Internode
length (cm)
茎粗
Stem diameter
(mm)
节间干密度
Clum dry density
(g/cm3)
节间充实度
Clum filling
degree (mg/cm)
定襄Dingxiang MX 84.90±2.93a 102.82±2.01b 6.72±0.07a 10.10±0.17a 67.09±1.04b 197.59±2.82b
MT 71.17±2.80b 126.38±5.62a 6.44±0.13bc 9.44±0.05b 75.87±1.92a 230.05±4.62a
LX 80.69±3.27a 84.33±3.01c 6.56±0.04ab 8.95±0.04c 57.35±1.56c 136.76±4.41c
LT 66.31±4.01b 113.64±2.84b 6.22±0.02c 8.39±0.09d 66.90±0.93b 155.64±1.16b
太谷Taigu MX 109.91±3.35a 57.76±2.05b 7.38±0.17a 9.14±0.05a 49.39±1.07c 128.98±2.45bc
MT 100.08±4.64ab 64.99±1.20a 7.11±0.05a 8.84±0.05b 60.57±1.83a 148.03±1.04a
LX 92.86±3.97b 57.03±1.84b 6.64±0.05b 9.06±0.04a 47.91±0.59c 123.19±1.90c
LT 90.94±6.22b 61.55±3.60ab 6.33±0.08c 8.85±0.06b 55.23±1.69b 135.36±2.31b
泽州Zezhou MX 137.64±2.42a 43.29±0.61d 8.53±0.13b 7.77±0.23ab 41.01±2.51c 76.63±2.96c
MT 120.09±4.39b 53.55±1.29c 8.35±0.10b 7.47±0.07b 48.79±1.06bc 83.28±0.84c
LX 83.66±1.94c 79.49±1.64b 8.89±0.04a 8.30±0.15a 54.46±2.53b 116.19±2.26b
LT 82.26±1.24c 85.60±0.89a 8.69±0.12ab 7.98±0.14ab 64.75±2.66a 128.23±3.02a
方差分析Analysis of variance
地点Site (S) ** ** ** ** ** **
种植方式Planting pattern (P) ** ** ** ** ** **
地点×种植方式 (S×P) ** ** ** ** ** **

Fig.3

Effects of different planting patterns on the contents of lignin and cellulose in the first internode of stems in Zhangza 10"

Fig.4

Effects of different planting patterns on the contents of lignin and cellulose in the second internode of stems in Zhangza 10"

Table 4

Correlation analysis of different lodging resistance indexes"

参数
Parameter
H G LⅠ FⅠ IⅠ SⅠ DⅠ CⅠ MⅠ XⅠ LⅡ FⅡ IⅡ SⅡ DⅡ CⅡ MⅡ XⅡ
H 1
G 0.798** 1
LⅠ 0.003 0.245 1
FⅠ 0.436 0.208 -0.838** 1
IⅠ 0.514 0.860** 0.325 0.025 1
SⅠ 0.203 -0.311 -0.562 0.519 -0.549 1
DⅠ -0.115 -0.288 -0.534 0.537 -0.300 0.663* 1
CⅠ 0.148 -0.273 -0.654* 0.667* -0.481 0.929** 0.857** 1
MⅠ 0.254 0.032 -0.870** 0.950** -0.137 0.626* 0.739** 0.809** 1
XⅠ 0.244 -0.051 -0.864** 0.907** -0.302 0.688* 0.690* 0.839** 0.969** 1
LⅡ 0.027 0.156 0.878** -0.816** 0.111 -0.294 -0.406 -0.436 -0.768** -0.698* 1
FⅡ 0.430 0.282 -0.765** 0.968** 0.185 0.347 0.472 0.533 0.890** 0.811** -0.847** 1
IⅡ -0.020 0.413 0.644* -0.570 0.735** -0.700* -0.392 -0.703* -0.606* -0.747** 0.509 -0.428 1
SⅡ 0.252 -0.302 -0.651* 0.584* -0.485 0.940** 0.531 0.845** 0.625* 0.670* -0.458 0.455 -0.693* 1
DⅡ 0.259 0.129 -0.782** 0.916** 0.087 0.439 0.656* 0.642* 0.919** 0.842** -0.820** 0.931** -0.433 0.478 1
CⅡ 0.339 -0.023 -0.790** 0.907** -0.179 0.775** 0.759** 0.889** 0.938** 0.908** -0.716** 0.846** -0.638* 0.794** 0.886** 1
MⅡ 0.160 -0.011 -0.889** 0.933** -0.107 0.519 0.662* 0.701* 0.954** 0.907** -0.882** 0.915** -0.593* 0.578* 0.944** 0.896** 1
XⅡ 0.398 0.206 -0.666* 0.905** -0.006 0.518 0.669* 0.736** 0.924** 0.901** -0.635* 0.876** -0.557 0.477 0.898** 0.885** 0.864** 1

Fig.5

Effects of different planting patterns on yield of Zhangza 10"

[1] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52(22):3943-3949.
[2] Sachdev N, Goomer S, Singh L R. Foxtail millet:a potential crop to meet future demand scenario for alternative sustainable protein. Journal of the Science of Food and Agriculture, 2020, 101(3):831-842.
doi: 10.1002/jsfa.10716
[3] 李瑜辉, 郭二虎, 范惠萍, 等. 山西谷子产业发展十年(2009-2019年)变迁. 中国种业, 2019(11):22-24.
[4] 王慧, 朱冬梅, 高致富, 等. 播期与密度组合对不同小麦品种产量及抗倒性的影响. 扬州大学学报(农业与生命科学版), 2020, 41(6):34-39.
[5] Svečanjak Z, Jareš D, Kovačević M, et al. Changes in seed yield and quality resulting from lodging in Italian ryegrass crop. Journal of Central European Agriculture, 2020, 21(1):51-55.
doi: 10.5513/JCEA01/21.1.2748
[6] Feng S W, Ru Z G, Ding W H, et al. Study of the relationship between field lodging and stem quality traits of winter wheat in the north China plain. Crop and Pasture Science, 2019, 70(9):772-780.
doi: 10.1071/CP19147
[7] 邢志鹏, 吴培, 朱明, 等. 机械化种植方式对不同品种水稻株型及抗倒伏能力的影响. 农业工程学报, 2017, 33(1):52-62.
[8] 卢杰, 董连生, 常成, 等. 种植密度对不同小麦品种产量构成及抗倒伏性的影响. 麦类作物学报, 2021, 41(1):81-87.
[9] 阎旭东, 王秀领, 徐玉鹏, 等. 旱地春玉米不同覆膜种植模式的增产效应. 中国生态农业学报, 2018, 26(1):75-82.
[10] 邓妍, 王创云, 郭虹霞, 等. 群体密度对玉米茎秆农艺性状、力学特性和产量的影响. 作物杂志, 2017(4):89-95.
[11] 易艳红, 王文霞, 曾勇军, 等. 人工模拟机械开沟穴直播提高早籼稻茎秆抗倒伏能力及产量. 中国农业科学, 2019, 52(15):2729-2742.
[12] 王吉祥, 张伟莉, 周浩, 等. 单穴留苗数对晋谷21号茎秆机械强度和倒伏指数的影响. 山西农业科学, 2019, 47(4):594-596,611.
[13] 王文霞, 易艳红, 周燕芝, 等. 旱直播提高南方旱稻产量及抗倒伏性状. 核农学报, 2020, 34(2):383-391.
[14] 康楷, 刘丽华, 郑桂萍, 等. 不同耕作方式对水稻抗折力的影响. 北方水稻, 2020, 50(3):7-11.
[15] Tian B H, Liu Y L, Zhang L X, et al. Stem lodging parameters of the basal three internodes associated with plant population densities and developmental stages in foxtail millet (Setaria italica) cultivars differing in resistance to lodging. Crop and Pasture Science, 2017, 68(4):349-357.
doi: 10.1071/CP16453
[16] 刘振宇, 于肖, 秦岭, 等. 乙烯利和矮壮素螯合生长调节剂对谷子农艺和产量性状的影响. 山东农业科学, 2021, 53(3):29-35.
[17] 聂萌恩, 柳青山, 白文斌, 等. 喷施多效唑对谷子农艺性状及抗倒伏力的影响. 中国农学通报, 2019, 35(33):35-41.
[18] 韩玉林, 殷贵鸿, 杨光宇, 等. 小麦品种周麦22茎秆生长特性及其与抗倒性的关系. 作物杂志, 2017(2):34-37.
[19] Janshekar H, Brown C, Fiechter A, et al. Determination of biodegraded lignin by ultraviolet spectrophotometry. Analytica Chimica Acta, 1981, 130(1):81-91.
doi: 10.1016/S0003-2670(01)84153-2
[20] 梁国玲, 张永超, 贾志锋, 等. 高寒区不同燕麦品种(系)表型性状和茎秆力学特征与抗倒伏性的关系研究. 草业学报, 2019, 28(4):58-69.
[21] 刘刚, 赵桂琴. 灰色系统理论在燕麦抗倒伏综合评价中的应用. 草业科学, 2006, 23(10):23-27.
[22] Kaack K, Schwarz Kai-Uwe, Brander P E. Variation in morphology,anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Industrial Crops and Products, 2003, 17(2):131-142.
doi: 10.1016/S0926-6690(02)00093-6
[23] 朱新开, 王祥菊, 郭凯泉, 等. 小麦倒伏的茎秆特征及对产量与品质的影响. 麦类作物学报, 2006, 26(1):87-92.
[24] 杨晶, 刘文辉, 梁国玲, 等. 高寒地区不同燕麦品系抗倒伏相关性状分析. 草业学报, 2020, 29(12):50-60.
[25] 张明伟, 王慧, 董召娣, 等. 扬麦系列品种植株抗倒性能的演变及与茎秆性状的关系. 麦类作物学报, 2016, 36(9):1199-1208.
[26] 李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005, 31(5):662-666.
[27] 徐磊, 王大伟, 时荣盛, 等. 小麦基部节间茎秆密度与抗倒性关系的研究. 麦类作物学报, 2009, 29(4):673-679.
[28] 姚金保, 张平平, 任丽娟, 等. 小麦抗倒指数遗传及其与茎秆特性的相关分析. 作物学报, 2011, 37(3):452-458.
[29] 李伟, 熊谨, 陈晓阳. 木质素代谢的生理意义及其遗传控制研究进展. 西北植物学报, 2003, 23(4):675-681.
[30] 马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展. 作物杂志, 2012(2):10-15.
[31] 石海燕, 张玉星. 木质素生物合成途径中关键酶基因的分子特征. 中国农学通报, 2011, 27(5):288-291.
[32] 朱丽斌, 祁炳琴, 李碧霞, 等. 玉米茎秆强度形成与木质素积累关系的研究. 西北植物学报, 2020, 40(8):1389-1395.
[33] 王凯, 赵小红, 姚晓华, 等. 茎秆特性和木质素合成与青稞抗倒伏关系. 作物学报, 2019, 45(4):621-627.
doi: 10.3724/SP.J.1006.2019.81064
[34] 董荷荷, 骆永丽, 李文倩, 等. 不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响. 中国农业科学, 2020, 53(21):4399-4414.
[35] 王潭刚, 孙婷, 王冀川, 等. 播期和密度对滴灌冬小麦群体结构与抗倒特性的影响. 浙江农业学报, 2021, 33(2):193-202.
[36] 李万斌, 戴丽君, 李永平. 不同覆膜穴播种植模式对谷子和糜子作物籽粒灌浆特征及水分利用效率的影响. 农学学报, 2021, 11(1):37-43.
[37] 曹昌林, 张建华, 白文斌. 不同覆膜种植方式下旱地高粱土壤水温的变化及产量效应. 山西农业大学学报(自然科学版), 2020, 40(3):78-84.
[1] Wang Jian, Xu Ailing, Yang Na, Wang Ke, Xi Jilong, Wei Xiaodong, Zhang Jiancheng, Xi Tianyuan. Risk Assessment of Dry-Hot Wind in Different Sowing Dates of Wheat in Yuncheng Basin [J]. Crops, 2022, 38(2): 104-112.
[2] Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126.
[3] Zhou Yuzhuang, Wang Rui, Yao Zhaosheng, Zhang Weijun, Liu Tao, Sun Chengming. Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield [J]. Crops, 2022, 38(2): 127-133.
[4] Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142.
[5] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
[6] Yuan Jingya, Li Wanming, Pang Xueqin, Huang Linhua, Qi Lan, Wang Shengmou, Xie Zhengwei, Qiu Yibiao, Lai Quanhao, Qin Nana. Effects of Different Top Pruning Layers at Flowering Stage on Agronomic Traits and Yield of Broad Bean [J]. Crops, 2022, 38(2): 167-173.
[7] Liu Panfeng, Qin Jie, Hao Shuangnan, Wang Danli, Yang Wude, Feng Meichen, Song Xiaoyan. Effects of Selenium Concentration, Application Stage and Method on Yield and Grain Selenium Content of Different Millet Varieties [J]. Crops, 2022, 38(2): 182-188.
[8] Li Feng, Gao Tongmei, Su Xiaoyu, Wei Libin, Wang Dongyong, Tian Yuan, Li Tongke, Yang Zihao, Wei Shuangling. Effects of Nitrogen Rate and Planting Density on Photosynthetic Rate, Yield, Nitrogen Use Efficiency of Sesame [J]. Crops, 2022, 38(2): 215-221.
[9] Han Lijun, Xue Zhangyi, Xie Hao, Gu Junfei. Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties [J]. Crops, 2022, 38(2): 222-229.
[10] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[11] Gong Dan, Luo Gaoling, Zhang Xiaoyan, Zhu Xu, Yin Zhengong, Wang Suhua, Sha Aihua, Wang Lixia. Assessment of Adaptability for 34 New Cultivars of Cowpea under Different Eco-Environments [J]. Crops, 2022, 38(2): 89-95.
[12] Fang Mengying, Yan Peng, Lu Lin, Wang Qingyan, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium on Nitrogen Metabolism and Yield of Summer Maize under Different Nitrogen Levels [J]. Crops, 2022, 38(2): 96-103.
[13] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[14] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[15] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!