Crops ›› 2022, Vol. 38 ›› Issue (2): 127-133.doi: 10.16035/j.issn.1001-7283.2022.02.018

Previous Articles     Next Articles

Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield

Zhou Yuzhuang1,2(), Wang Rui1,2, Yao Zhaosheng1,2, Zhang Weijun1,2, Liu Tao1,2,*(), Sun Chengming1,2,3,*()   

  1. 1Jiangsu Province Key Laboratory of Crop Genetic Physiology/Jiangsu Province Key Laboratory of Crop Cultivation Physiological/College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Yangzhou University, Yangzhou 225009, Jiangsu, China
    3Joint Laboratory for International Cooperation in Agriculture and Agricultural Safety of the Ministry of Education/Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-03-17 Revised:2021-07-08 Online:2022-04-15 Published:2022-04-24
  • Contact: Liu Tao,Sun Chengming E-mail:1015189531@qq.com;34626459@qq.com;cmsun@yzu.edu.cn

Abstract:

The effects of soil surface structure on wheat growth, development and yield were determined by artificial screening of soils with eight degrees (Ⅰ-Ⅷ) of soil surface structure. The results showed that, under the soil surface structure of gradeⅠ-Ⅲ, the yield with denser sowing was 6718.54, 7375.04 and 8109.96kg/ha, the yields with sparse sowing were 5997.34, 6822.02 and 7789.55kg/ha, and moderate sowing, the yields were 7267.31, 7933.88 and 8570.04kg/ha, respectively. Denser or less sowing was not conductive to the formation of yield, the moderate density was beneficial to building a high-yielding and highly efficient population, and the wheat yield was the highest. Under the grade Ⅳ-Ⅷ soil surface structure, denser sowing was beneficial to high-yield, while sparse sowing was the lowest. Root activities, total tillering number, leaf area indexes, SPAD, nitrogen accumulation were better than that of other grades under the soil surface structure of grade Ⅲ and Ⅳ. The total root length, plant height, dry matter weight per plant and other indicators were better under the grade Ⅲ and Ⅳ. Compared with the surface structure of other soil surface structure, the data on root activity, root morphology, population quality indexes, yield etc, showed the construction of high-yield and high-performance populations.

Key words: Wheat, Soil surface structure, Root, Population quality, Yield

Table 1

Classification and composition of test soil mm"

土壤级级
Soil grade
最大土块粒径
Maximum soil
particle size
土块粒径Soil particle size
<5 [5~15) [15~50) [50~80) ≥80
4 100% 0% 0% 0% 0%
12 60% 40% 0% 0% 0%
22 45% 36% 19% 0% 0%
34 38% 34% 28% 0% 0%
48 35% 33% 32% 0% 0%
64 31% 28% 26% 15% 0%
82 30% 24% 20% 16% 10%
102 28% 21% 17% 15% 19%

Table 2

Effects of soil surface structure on root activities of wheat at different growth stages μg/(g·h)"

土壤等级
Soil grade
分蘖期Tillering stage 拔节期Jointing stage
S J M 平均Average S J M 平均Average
118.29 124.48 114.42 119.07 124.21 137.58 116.74 126.18
123.10 138.71 120.46 127.42 134.15 140.20 122.24 132.20
137.67 152.38 126.15 138.73 143.72 156.41 131.80 143.98
147.20 159.14 133.28 146.54 153.45 168.79 139.48 153.91
130.64 142.04 122.84 131.84 145.18 153.59 123.60 140.79
129.11 127.86 116.44 124.47 130.89 141.37 119.30 130.52
114.08 121.10 102.21 112.47 128.16 134.26 114.28 125.57
107.42 117.30 97.71 107.48 115.68 122.24 101.15 113.02

Table 3

Effects of soil surface structure on total root length of wheat cm"

土壤等级
Soil grade
分蘖期Tillering stage 拔节期Jointing stage
S J M 平均Average S J M 平均Average
56.26 73.74 77.56 69.05 108.63 123.82 135.16 122.54
62.56 74.85 82.34 73.25 112.88 126.09 136.91 125.29
78.13 86.76 91.69 85.53 125.70 132.84 159.62 139.39
87.48 95.06 102.65 95.06 138.52 147.89 160.37 148.93
65.33 76.41 91.75 77.83 118.98 134.61 145.15 132.91
54.33 65.38 85.02 68.24 110.06 118.16 138.15 122.12
54.28 55.25 72.90 60.81 105.10 96.02 110.43 103.85
43.49 58.22 69.75 57.15 87.13 94.92 105.24 95.76

Table 4

Effects of soil surface structure on root surface area of wheat cm2"

土壤等级
Soil grade
分蘖期Tillering stage 拔节期Jointing stage
S J M 平均Average S J M 平均Average
7.61 7.58 6.36 7.18 12.12 15.05 10.23 12.47
7.95 8.15 6.35 7.48 13.92 17.84 11.25 14.34
7.01 8.89 7.75 7.88 14.44 18.21 12.87 15.17
8.29 8.93 7.64 8.29 16.74 18.99 12.59 16.11
7.41 8.39 6.13 7.31 15.39 16.86 12.11 14.79
6.78 7.96 6.05 6.93 11.64 15.62 10.78 12.68
5.68 7.84 5.81 6.44 9.99 11.61 8.85 10.15
5.21 7.63 4.51 5.78 8.97 9.53 6.66 8.39

Table 5

Effect of soil surface structure on average root diameter of wheat mm"

土壤等级
Soil grade
分蘖期Tillering stage 拔节期Jointing stage
S J M 平均Average S J M 平均Average
0.2785 0.2916 0.3268 0.2990 0.2957 0.3609 0.3691 0.3419
0.2912 0.3157 0.3300 0.3123 0.3495 0.4023 0.4199 0.3906
0.3217 0.3340 0.3496 0.3351 0.3765 0.4041 0.4312 0.4039
0.3067 0.3175 0.3310 0.3184 0.3936 0.4049 0.4203 0.4063
0.2957 0.3061 0.3292 0.3103 0.3431 0.4062 0.4148 0.3880
0.2943 0.3011 0.3228 0.3061 0.3252 0.3539 0.3936 0.3576
0.2815 0.2986 0.3163 0.2988 0.3079 0.3462 0.3612 0.3384
0.2761 0.2866 0.3014 0.2881 0.2948 0.3290 0.3560 0.3266

Table 6

Effects of soil surface structure on quality indexes of wheat population at flowering stage"

土壤等级
Soil grade
株高
Plant height (cm)
干物质重
Dry matter weight (kg/hm2)
LAI 茎蘖数
Tiller number (×104/hm2)
S J M 平均
Average
S J M 平均
Average
S J M 平均
Average
S J M 平均
Average
66.55 75.10 79.61 73.75 6597.41 7794.32 9469.83 7953.85 3.33 4.07 4.86 4.09 318.28 408.81 480.34 402.48
59.35 70.91 76.65 68.97 6930.38 8584.00 10378.64 8631.01 3.29 4.20 5.57 4.35 384.83 477.61 510.02 457.49
60.52 69.63 73.56 67.90 7850.59 9071.26 10492.13 9137.99 3.80 4.63 5.71 4.71 426.41 515.63 532.04 491.36
61.31 70.14 78.52 69.99 8233.02 9757.98 11328.27 9773.09 3.96 4.61 5.93 4.83 459.91 512.24 554.16 508.77
65.44 71.22 73.71 70.12 7053.17 8968.40 10652.22 8891.26 3.00 4.76 5.79 4.52 403.92 472.68 534.61 470.40
68.95 72.32 77.91 73.06 7014.14 8262.63 9881.83 8386.20 3.33 3.88 5.55 4.25 354.62 421.21 508.56 428.13
69.63 74.61 80.25 74.83 6984.49 8115.70 9453.20 8184.46 3.17 4.21 5.18 4.19 370.08 405.52 472.04 415.88
70.44 74.61 83.37 76.14 5826.36 7708.84 9521.05 7685.42 3.15 3.63 4.95 3.91 322.02 372.41 452.41 382.28

Fig.1

Effects of soil surface structure on SPAD of flag leaf of wheat at flowering stage"

Fig.2

Effects of soil surface structure on nitrogen contents of wheat at flowering stage"

Table 7

Effects of soil surface structure on yield and its compositions of wheat at ripe stage"

土壤等级
Soil grade
穗数
Spike number (×104/hm2)
穗粒数
Grain number per spike
千粒重
1000-seed weight (g)
产量
Yield (kg/hm2)
S J M S J M S J M S J M 平均Average
318.01 462.04 487.21 44.77 39.63 37.44 42.13 39.69 36.83 5997.34 7267.31 6718.54 6661.06
371.80 496.69 535.78 44.03 40.52 37.36 41.67 39.43 36.84 6822.02 7933.88 7375.04 7376.98
400.39 515.18 552.03 43.60 40.09 38.15 44.62 41.49 38.51 7789.55 8570.04 8109.96 8156.52
409.51 475.20 571.15 41.91 40.29 38.18 44.78 42.91 40.14 7684.63 8215.56 8753.32 8217.84
332.00 439.98 567.60 44.37 41.14 35.13 45.77 43.62 42.50 6741.87 7894.02 8475.19 7703.70
310.86 398.95 496.58 42.23 40.19 38.25 46.24 44.08 42.63 6068.53 7067.40 8097.36 7077.76
281.42 370.81 499.82 41.60 39.07 36.07 47.75 45.33 42.87 5589.47 6566.34 7727.58 6627.80
271.35 331.65 408.87 40.28 39.87 38.47 46.89 45.52 44.64 5125.39 6018.63 7020.50 6054.84
[1] 李朝苏, 李明, 吴晓丽, 等. 耕作播种方式对稻茬小麦生长和养分吸收利用的影响. 应用生态学报, 2020, 31(5):1435-1442.
[2] Chhokar R S, Sharma R K, Gill S C, et al. Influence of tillage,cultivar,seed rate and planting geometry on wheat yield. Journal of Wheat Research, 2017, 9:12-20.
[3] Baiamonte G, Novara A, Gristina L, et al. Durum wheat yield uncertainty under different tillage management practices and climatic conditions. Soil and Tillage Research, 2019, 194:1-9.
[4] 衣政伟, 胡中泽, 杨大柳, 等. 播量和播期对苏中地区小麦生长发育及产量的影响. 江苏农业科学, 2020, 48(11):67-72.
[5] 顾大路, 杜小凤, 杨文飞, 等. 不同播种方式对稻茬晚播小麦生长及产量的影响. 江西农业学报, 2020, 32(8):16-22.
[6] 乐韬. 机械耕作、播种方式和氮肥运筹对稻茬小麦生长、产量和效益的影响. 扬州:扬州大学, 2019.
[7] 张明伟, 马泉, 丁锦峰, 等. 稻茬晚播小麦高产群体特征分析. 麦类作物学报, 2018, 38(4):445-454.
[8] 谢迎新, 谢旭东, 白雪莹, 等. 氮肥施用对豫南稻茬小麦群体质量指标及产量的影响. 华北农学报, 2017, 32(1):165-170.
[9] Hammer G L, Dong Z S, Mclean G, et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt?. Crop Science, 2009, 49(1):299-312.
doi: 10.2135/cropsci2008.03.0152
[10] 方燕, 闵东红, 高欣, 等. 不同抗旱性冬小麦根系时空分布与产量的关系. 生态学报, 2019, 39(8):2922-2934.
[11] Wasson A P, Richards R A, Chatrath R, et al. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 2012, 63(9):3485-3498.
doi: 10.1093/jxb/ers111 pmid: 22553286
[12] 王卉, 李清莲, 曹玉英. 不同耕作方法与土壤容重对玉米生育和产量的影响研究. 中国农业信息, 2013(3):102.
[13] 张国红, 张振贤, 梁勇, 等. 土壤紧实度对温室番茄生长发育、产量及品质的影响. 中国生态农业学报, 2004, 12(3):65-67.
[14] 张亚如, 崔洁亚, 侯凯旋, 等. 土壤容重对花生结荚期氮、磷、钾、钙吸收与分配的影响. 华北农学报, 2017, 37(6):198-204.
[15] Soltani A, Robertson M J, Torabi B, et al. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology, 2006, 138:156-167.
doi: 10.1016/j.agrformet.2006.04.004
[16] 张斯梅, 顾克军, 许博, 等. 稻秸还田与播种方式影响小麦出苗及产量的大田试验研究. 中国农学通报, 2016, 32(33):29-33.
[17] 马溶慧. 高产小麦群体质量指标及其与产量关系的研究. 郑州:河南农业大学, 2005.
[18] 胡敏, 贺德先. 小麦根系活力的昼夜变化及最佳取样和测定时间. 麦类作物学报, 2011, 31(6):1094-1098.
[19] 臧贺藏, 王言景, 张均, 等. 冬小麦初生根与次生根形态、生理性状差异分析. 河南农业科学, 2018, 47(6):18-23.
[20] 周宣材, 刘义国, 张玉梅, 等. 吸湿回干对冬小麦种子萌发和幼苗期根系形态及生理的影响. 干旱地区农业研究, 2018, 36(5):28-33.
[21] Tubeileh A, Groleau-Renaud V, Plantureux S, et al. Effect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system. Soil and Tillage Research, 2003, 71(2):151.
doi: 10.1016/S0167-1987(03)00061-8
[22] Passioura J B. Roots and drought resistance. Agricultural Water Management, 1983, 7:265-280.
doi: 10.1016/0378-3774(83)90089-6
[23] 夏爱萍, 梁卫理, 吕红毡, 等. 冀南平原冬小麦-夏玉米生产主要限制因素分析. 中国农学通报, 2006, 22(9):123-126.
[24] 聂胜委, 张浩光, 张巧萍, 等. 立式旋耕对小麦生长季土壤紧实度及产量的影响. 农业资源与环境学报, 2021, 38(1):36-42.
[25] 孙中伟. 不同播种方式下播期与播量对小麦籽粒产量和品质形成的影响. 南京:南京农业大学, 2011.
[26] 张睿, 刘新伦, 刘党校, 等. 播种方式对小麦生长发育及产量的影响. 麦类作物学报, 2001, 21(2):92-95.
[27] 李明, 李朝苏, 刘淼, 等. 耕作播种方式对稻茬小麦根系发育、土壤水分和硝态氮含量的影响. 应用生态学报, 2020, 31(5):1425-1434.
[1] Wang Jian, Xu Ailing, Yang Na, Wang Ke, Xi Jilong, Wei Xiaodong, Zhang Jiancheng, Xi Tianyuan. Risk Assessment of Dry-Hot Wind in Different Sowing Dates of Wheat in Yuncheng Basin [J]. Crops, 2022, 38(2): 104-112.
[2] Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126.
[3] Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142.
[4] Liu Limin, Liu Hongjian, Li Aomei, He Weizhong. Effects of Light and Temperature on Photoautotrophic Rooting for in Vitro Sugarcane Plantlets [J]. Crops, 2022, 38(2): 153-157.
[5] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
[6] Yuan Jingya, Li Wanming, Pang Xueqin, Huang Linhua, Qi Lan, Wang Shengmou, Xie Zhengwei, Qiu Yibiao, Lai Quanhao, Qin Nana. Effects of Different Top Pruning Layers at Flowering Stage on Agronomic Traits and Yield of Broad Bean [J]. Crops, 2022, 38(2): 167-173.
[7] Liu Panfeng, Qin Jie, Hao Shuangnan, Wang Danli, Yang Wude, Feng Meichen, Song Xiaoyan. Effects of Selenium Concentration, Application Stage and Method on Yield and Grain Selenium Content of Different Millet Varieties [J]. Crops, 2022, 38(2): 182-188.
[8] Guo Yongxin, Zhou Hao, Sun Peng, Wang Yaqing, Ma Ke, Li Xiaorui, Dong Shuqi, Guo Pingyi, Yuan Xiangyang. Effects of Planting Patterns on Lodging Resistance and Yield of Zhangza 10 in Different Ecological Areas [J]. Crops, 2022, 38(2): 195-202.
[9] Li Feng, Gao Tongmei, Su Xiaoyu, Wei Libin, Wang Dongyong, Tian Yuan, Li Tongke, Yang Zihao, Wei Shuangling. Effects of Nitrogen Rate and Planting Density on Photosynthetic Rate, Yield, Nitrogen Use Efficiency of Sesame [J]. Crops, 2022, 38(2): 215-221.
[10] Han Lijun, Xue Zhangyi, Xie Hao, Gu Junfei. Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties [J]. Crops, 2022, 38(2): 222-229.
[11] Yan Xiaocui, Duan Zhenying, Yang Huali, Yao Zhanjun, Li Zaifeng. QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22 [J]. Crops, 2022, 38(2): 69-74.
[12] Zhao Kai, Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen. The Role of Wheat Deplantation-Related Genes in Degradation of Chlorophyll in Spring Wheat Leaves [J]. Crops, 2022, 38(2): 81-88.
[13] Gong Dan, Luo Gaoling, Zhang Xiaoyan, Zhu Xu, Yin Zhengong, Wang Suhua, Sha Aihua, Wang Lixia. Assessment of Adaptability for 34 New Cultivars of Cowpea under Different Eco-Environments [J]. Crops, 2022, 38(2): 89-95.
[14] Fang Mengying, Yan Peng, Lu Lin, Wang Qingyan, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium on Nitrogen Metabolism and Yield of Summer Maize under Different Nitrogen Levels [J]. Crops, 2022, 38(2): 96-103.
[15] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!