Crops ›› 2022, Vol. 38 ›› Issue (2): 189-194.doi: 10.16035/j.issn.1001-7283.2022.02.026

Previous Articles     Next Articles

Spatial Variation Characteristics of Main Nutrients in Tobacco Planting Soil in Tongren City, Guizhou Province

Tan Zhiyong1(), Shen Xiaoxiong2, Liu Jie3,*(), Tan Daxin4, Bai Bin1, Zhou Xinghua3, Zhao Hui1   

  1. 1College of Economics and Management, Tongren University, Tongren 554300, Guizhou, China
    2College of Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang 550025, Guizhou, China
    3Tongren Branch of Guizhou Provincial Tobacco Company, Tongren 554300, Guizhou, China
    4Agricultural and Rural Bureau of Linli, Linli 415200, Hunan, China
  • Received:2021-07-09 Revised:2021-10-01 Online:2022-04-15 Published:2022-04-24
  • Contact: Liu Jie E-mail:daydayupccc@163.com;25256757@qq.com

Abstract:

Using GPS positioning technology, 202 tobacco planting soil samples were sampled and analyzed in Tongren, Guizhou province. The spatial variation characteristics of main nutrients in tobacco planting soil were studied by combining geostatistics and geographic information technology. The results showed that the contents of organic matter, alkaline hydrolyzable nitrogen, available phosphorus, and exchangeable potassium in tobacco planting soil were 5.47-59.81g/kg, 27.33-241.32mg/kg, 1.50-115.96mg/kg and 46.20-977.10mg/kg, respectively. The contents of organic matter and exchangeable potassium were rich, and the content of alkali hydrolyzed nitrogen was relatively high, so the application of corresponding fertilizer should be properly controlled. The content of available phosphorus in 33.70% of tobacco planting soil was higher than 30mg/kg. It was suggested that the application rate of phosphorus fertilizer should be properly controlled in these areas. The content of available phosphorus in 30.70% of tobacco planting soil was less than 15mg/kg. It was suggested that more phosphorus fertilizer should be applied in these areas to meet the needs of tobacco normal metabolism and quality formation. The spatial distribution of organic matter and alkali hydrolyzed nitrogen content in tobacco-growing soil in Tongren showed a certain correlation and both showed an increasing trend from east to west. In the vertical distribution, the contents of organic matter, alkali hydrolyzed nitrogen, and exchangeable potassium showed an extremely significant positive correlation with altitude.

Key words: Tongren city, Tobacco planting soil, Nutrient, Spatial variation

Fig.1

Distribution of soil sampling location"

Table 1

Classification standard of main nutrients of tobacco planting soil in Tongren"

指标Index 极低Lowest 低Lower 中等Medium 高Higher 极高Highest
有机质Organic matter (g/kg) ≤10 11~20 21~30 31~45 >45
碱解氮Alkali hydrolyzed nitrogen (mg/kg) ≤30 31~60 61~120 121~150 >150
有效磷Available phosphorus (mg/kg) ≤10 11~15 16~30 31~40 >40
交换性钾Exchangeable potassium (mg/kg) ≤80 81~150 151~220 221~350 >350

Table 2

Descriptive analysis of main nutrients of tobacco planting soil in Tongren"

指标
Index
变幅
Range of
change
均值±标准差
Mean±standard
deviation
变异系数
Coefficient of
variation (%)
分布频率Distribution frequency (%)
极低
Lowest

Lower
中等
Medium

Higher
极高
Highest
有机质Organic matter (g/kg) 5.47~59.81 27.13±7.80 28.75 1.00 11.40 59.80 24.30 3.50
碱解氮Alkali hydrolyzed nitrogen (mg/kg) 27.33~241.32 124.40±31.74 25.51 0.50 2.50 42.10 36.10 18.80
有效磷Available phosphorus (mg/kg) 1.50~115.96 28.13±21.24 75.51 18.30 12.40 35.60 12.40 21.30
交换性钾Exchangeable potassium (mg/kg) 46.20~977.10 342.01±168.56 49.29 2.50 8.90 12.40 35.60 40.60

Table 3

The semi variogram models of main nutrients and its corresponding parameters"

指标
Index
模型
Model
块金值
Nugget
偏基台值
Partial sill
基台值
Sill
块金效应
Nugget
effect (%)
标准化平均误差
Standardized
mean error
标准化均方根误差
Standardized root
mean square error
有机质Organic matter 球状模型 42.70 21.35 64.05 66.67 0.002 1.027
碱解氮Alkali hydrolyzed nitrogen 球状模型 708.43 348.62 1057.05 67.02 -0.001 1.002
有效磷Available phosphorus 指数模型 0.32 0.21 0.53 60.38 -0.081 0.886
交换性钾Exchangeable potassium 球状模型 18805.26 10512.82 29318.08 64.14 0.025 0.941

Fig.2

Regional distribution of soil nutrients in Tongren"

Table 4

Correlation coefficients between main soil nutrients and altitude"

项目Item 有机质Organic matter 碱解氮Alkali hydrolyzed nitrogen 有效磷Available phosphorus 交换性钾Exchangeable potassium
海拔Altitude 0.296** 0.376** 0.095 0.275**

Fig.3

Smooth regression analysis of soil nutrients and altitude"

[1] 陈江华, 李志宏, 刘建利, 等. 全国主要烟区土壤养分丰缺状况评价. 中国烟草学报, 2004, 10(3):18-22.
[2] 吴杰, 李向鹏, 陈鑫, 等. 重庆市涪陵区植烟土壤养分的适宜性评价及变异分析. 土壤, 2020, 52(1):106-112.
[3] 孙燕鑫, 李子玮, 张豪洋, 等. 马龙和沾益烟区土壤与烟叶铁元素分布特征及其对烟叶感官质量的影响. 作物杂志, 2021(3):140-148.
[4] 李自林, 陆亚春, 赵磊峰, 等. 靖西市植烟土壤肥力适宜性综合评价. 作物杂志, 2021(3):155-160.
[5] 李强, 周冀衡, 杨荣生, 等. 马龙县植烟土壤养分空间变异特征及适宜性评价. 土壤, 2011, 43(6):897-902.
[6] 周星, 彭毅, 吴绍军, 等. 剑阁县植烟土壤养分的空间变异研究. 水土保持研究, 2015, 22(1):85-89.
[7] 刘立昊. 泸州烟区烤烟施肥现状及平衡调控施肥措施研究. 成都:四川农业大学, 2018.
[8] 马国雄. 攀枝花大龙潭基地单元植烟土壤养分特征与氮磷钾平衡施用技术研究. 成都:四川农业大学, 2015.
[9] 毛跃云. 川南不同生态区烤烟氮磷钾平衡施肥研究. 成都:四川农业大学, 2015.
[10] 付瑞滢. 贵州省铜仁市玉米生长的气象条件分析. 北京农业, 2015(6):179-180.
[11] 鲁如坤. 土壤农业化学分析法. 北京: 中国农业科技出版社, 2000.
[12] 谭智勇, 周冀衡, 李强, 等. 文山州土壤养分空间分布与变化规律. 矿物学报, 2016, 36(4):600-604.
[13] 倪明, 濮永瑜, 何翔, 等. 保山市植烟土壤养分时空变异特征及土壤肥力适宜性评价. 西南农业学报, 2020, 33(10):2303-2309.
[14] 郭东锋, 张福建, 张继光, 等. 基于云模型的皖南植烟土壤养分适宜性评价. 烟草科技, 2020, 53(9):18-24.
[15] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价. 环境科学, 2020, 41(6):2822-2833.
[16] Antisari L V, Trenti W, Feudis M D, et al. Soil quality and organic matter pools in a temperate climate (Northern Italy) under different land uses. Agronomy, 2021, 11(9):1815.
doi: 10.3390/agronomy11091815
[17] 孙海人, 张吉立, 李洋, 等. 添加有机质饼肥对重茬烤烟养分累积及品质的影响. 南方农业学报, 2013, 44(2):244-247.
[18] Drescher G L, Silva L S, Sarfaraz Q, et al. Available nitrogen in paddy soils depth:influence on rice root morphology and plant nutrition. Journal of Soil Science and Plant Nutrition, 2020, 20(3):1029-1041.
doi: 10.1007/s42729-020-00190-5
[19] 王晓强, 何晓冰, 常栋. 基于GIS的烟田土壤碱解氮时空变异性研究--以豫中襄城县紫云镇为例. 土壤通报, 2018, 49(5):1130-1136.
[20] 谢媛圆, 佀国涵, 李方明, 等. 湖北省烟区土壤肥力状况及其演变特征. 湖北农业科学, 2020, 59(18):39-47.
[21] 李自林, 陆亚春, 范东升, 等. 百色市植烟土壤养分丰缺适宜性评价. 湖南农业科学, 2021(1):40-44.
[22] Ma Z, Walk T C, Marcus A, et al. Morphological synergism in root hair length,density,initiation and geometry for phosphorus acquisition in Arabidopsis thaliana:A modeling approach. Plant and Soil, 2001, 236:221-235.
doi: 10.1023/A:1012728819326
[23] 高嘉宁, 张丹, 杨蒙岭, 等. 氮、磷、钾配施对烟叶生物量和品质成分含量的影响. 西南农业学报, 2021, 34(6):1269-1276.
[24] 黄绍文, 金继运. 土壤钾形态及其植物有效性研究进展. 土壤肥料, 1995(5):23-29.
[25] 何俊瑜, 陈博, 陈秀兰, 等. 贵州铜仁地区主要烟区植烟土壤养分状况. 土壤, 2012, 44(6):953-959.
[26] 季璇, 陈熙卓, 宋文静, 等. 施钾量对不同生态区烤烟生长和钾肥利用率的影响. 中国烟草科学, 2020, 41(5):36-42.
[1] Wei Xingdi, Zuo Xiangbing, Tian Weirong, Pei Chengjiang, Zhang Mingjun, Lu Min. Investigation on Main Crops and Their By-Products in Guizhou and the Evaluation of Feeding Value [J]. Crops, 2022, 38(2): 16-21.
[2] Cheng Dayu, Liu Kun, Gao Jie, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Nutrient and Water Management on Rice Fragrance [J]. Crops, 2022, 38(2): 22-27.
[3] Liu Wenlong, Ning Shanghui, Cao Mingfeng, Zhu Li, Gao Yuzhen, Zhang Xuewei, Wen Zixiang, Jiang Baodi, Jing Yanqiu, Deng Yong. Correlation Analysis of Soil Micronutrient and Chemical Components of Tobacco Leaves in Taoyuan County [J]. Crops, 2021, 37(5): 176-180.
[4] Wang Guojiao, Song Peng, Yang Zhenzhong, Zhang Wenzhong. Effects of Straw Returning on Photosynthetic Matter Production Characteristics, Quality of Rice and Soil Nutrients [J]. Crops, 2021, 37(4): 67-72.
[5] Wang Yizhen, Su Gang, Cao Lixia, Li Ze, Ge Junzhu, Zang Fengyan, Li Zifang, Wang Jinlong, Wu Xidong. Study on Decomposition and Nutrient Release Rule of Green Manure Returned in Spring Maize Field [J]. Crops, 2021, 37(3): 120-125.
[6] Meng Xiangyu, Ran Cheng, Liu Baolong, Zhao Zhexuan, Bai Jingjing, Geng Yanqiu. Effects of Straw Returning to Field and Nitrogen Application on Soil Nutrients and Rice Yield in Black Soil Areas of Northeast China [J]. Crops, 2021, 37(3): 167-172.
[7] Zhou Zhengping, Tian Baogeng, Chen Wanhua, Wang Ziyang, Yuan Wei, Liu Shiping. Effects of Different Tillage Methods and Straw Returning on Soil Nutrients and Wheat Yield and Quality [J]. Crops, 2021, 37(3): 78-83.
[8] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[9] Yang Yunma, Yang Junfang, Jia Liangliang, Xing Suli, Fan Jianying, Feng Zhiming, Zhang Shuqing, Xiang Congchao, Huang Shaohui, Liu Xuetong. Nutrient Absorption and Suitable Quantity of Spring Potato in Hebei Double Cropping Cultivated Region [J]. Crops, 2020, 36(6): 170-174.
[10] Hu Yuqian,Zi Tao,Xiong Tinghao,Zhang Zhenhua,Song Haixing. Study on the Difference of Nutrient Absorption between Winter Rape Cultivars at Early Maturity and Conventional Maturity [J]. Crops, 2020, 36(1): 117-123.
[11] Huang Binglin,Wang Mengxue,Jin Xijun,Hu Guohua,Zhang Yuxian. Effects of Different Tillage Treatments on Soil Microorganisms, Enzyme Activities and Nutrients [J]. Crops, 2019, 35(6): 104-113.
[12] Li Chunxi,Li Sisi,Shao Yun,Ma Shouchen,Liu Qing,Weng Zhengpeng,Li Xiaobo. Effects of Organic Materials Returning on Enzyme Activities and Soil Carbon and Nitrogen Content in Wheat Field under Nitrogen-Reducing Conditions [J]. Crops, 2019, 35(5): 129-134.
[13] Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3 [J]. Crops, 2019, 35(5): 166-172.
[14] Liang Junmei,Zhang Jun,An Hao,Jing Yupeng,Li Huanchun,Duan Yu. Effects of Recommended Fertilization by Management Nutrition Expert System on Potato Yield and Fertilizer Use Efficiency [J]. Crops, 2019, 35(4): 133-138.
[15] Yang Zhihui,Zhang Lifeng,Zhang Jizong. Production Effects of Sugarbeet “Southern Seedling North Planting” [J]. Crops, 2019, 35(4): 154-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!