Crops ›› 2023, Vol. 39 ›› Issue (1): 20-29.doi: 10.16035/j.issn.1001-7283.2023.01.004

Previous Articles     Next Articles

Identification and Bioinformatics Analysis of DGAT Gene Family in Cereal Crops

Meng Yaxuan(), Yao Xuhang, Sun Yingqi, Zhao Xinyue, Wang Fengxia, Weng Qiaoyun, Liu Yinghui()   

  1. College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, Hebei, China
  • Received:2021-05-10 Revised:2021-09-05 Online:2023-02-15 Published:2023-02-22

Abstract:

Diacylglycerol acyltransferase (DGAT) is a rate-limiting enzyme for triacylglycerol synthesis and plays an important role in plant oil synthesis. To clarify the expression characteristics of the DGAT gene family in cereal crops, this study performed a genome-wide scan of major cereal crops using known DGAT member sequences to analyze their isoform differences and expression characteristics. The results showed that DGAT proteins were highly fatty, basic and unstable. The DGAT members in the phylogenetic tree were clustered into four subclades, and the members of different subclades evolved in parallel with each other. The gene structure of DGATs was conserved within groups and diverse between groups, and there were multiple types of motifs with specific structural domain compositions of different isoforms. There were multiple types of cis-acting elements in the upstream sequences of DGATs, such as plant development and stress response, indicating that DGATs were widely involved in different biological processes. Transcriptome analysis showed that DGATs were widely present in different tissues. In response to different abiotic stresses such as drought and low temperature, DGATs were induced to different degrees with differential spatial and temporal expression. This study may lay the foundation for functional studies of DGAT gene family members in cereal crops.

Key words: Cereal crops, DGAT gene family, Bioinformatics analysis, Expression analysis

Table 1

Information about DGAT gene family members"

物种
Species
基因名
Genetic
name
染色体位置
Chromosome
position
氨基酸
长度
Amino acid
length
分子量
Molecular
weight
(kDa)
理论
等电点
Isoelectric
point
不稳定系数
Coefficient
of instability
脂肪系数
Fat
coefficient
亲水性
总均值
Hydrophilic
total mean
α-螺旋
α-
spiral
(%)
延伸链
Extended
chain (%)
β-转角
β-
corner
(%)
无规则
卷曲
Random
coil (%)
亚细胞定位
Subcellular
localization
水稻
Oryza
sativa
OsDGAT1-1 chr5.5971951-5978628 538 59.60 9.15 48.49 99.01 0.265 48.14 10.22 3.72 37.92 质膜
OsDGAT1-2 chr6.21677541-21684368 477 55.11 9.43 44.61 106.90 0.309 50.31 13.00 4.40 32.29 质膜
OsDGAT2-1 chr2.29599167-29601738 338 37.55 9.71 35.13 95.18 0.299 36.98 21.01 9.17 32.84 质膜
OsDGAT2-2 chr6.12809778-12812419 340 37.77 9.34 34.22 98.94 0.311 38.24 19.12 7.35 35.29 质膜
OsWSD-1 chr1.28033034-28051826 484 52.75 7.27 35.77 85.91 0.007 36.78 16.74 4.54 41.94 细胞质
OsWSD-2 chr1.32484736-32489971 531 58.21 6.77 45.88 87.87 -0.144 38.42 17.89 3.77 39.92 质膜
OsWSD-3 chr5.27660691-27664963 565 62.37 9.11 53.17 86.88 -0.191 38.94 14.87 3.18 43.01 内质网
谷子
Setaria
italica
SiDGAT1-1 chr3.7546566-7553318 521 58.43 9.13 48.63 102.42 0.311 47.60 10.75 4.41 37.24 质膜
SiDGAT1-2 chr4.36212704-36219516 495 56.79 9.51 48.61 104.38 0.298 46.26 11.52 3.64 38.59 质膜
SiDGAT2-1 chr1.36275566-36279052 273 30.03 9.91 41.83 101.83 0.469 33.70 19.78 7.69 38.83 质膜
SiDGAT2-2 chr4.16556591-16559685 364 40.31 10.66 54.99 85.49 -0.077 29.12 18.41 7.69 44.78 质膜
SiWSD-1 chr2.1723994-1726391 477 52.20 8.57 43.36 98.99 0.095 40.25 17.61 3.14 38.99 质膜
SiWSD-2 chr3.11005742-11010410 273 30.04 9.91 41.83 101.83 0.469 33.70 19.78 7.69 38.83 内质网
SiWSD-3 chr5.33312705-33316538 538 57.92 7.67 44.54 87.10 0.013 41.64 13.57 3.72 41.08 细胞质
SiWSD-4 chr5.37959858-37963149 491 54.05 9.09 39.99 94.38 -0.034 40.94 15.07 3.46 40.53 叶绿体
SiWSD-5 chr8.35767324-35770211 439 47.88 8.77 43.46 99.00 0.080 36.90 15.72 3.64 43.74 质膜
SiWSD-6 chr9.45940206-45942823 515 56.14 6.68 40.82 93.44 0.000 38.45 16.31 3.69 41.55 内质网
小麦
Triticum
aestivum
TaDGAT1-1 chr1A.148953747-148959478 513 57.74 8.92 51.01 99.61 0.295 48.34 11.70 4.29 35.67 质膜
TaDGAT1-2 chr1B.195590716-195596372 513 57.75 8.99 50.36 99.81 0.299 47.56 12.87 4.29 35.28 质膜
TaDGAT1-3 chr1D.141705469-141711495 513 57.78 9.07 49.88 99.61 0.290 48.34 11.89 4.48 35.28 质膜
TaDGAT1-4 chr7A.532701958-532710211 470 54.07 9.20 43.38 105.38 0.291 47.87 11.28 2.98 37.87 质膜
TaDGAT1-5 chr7B.491164040-491172543 471 54.14 9.20 43.22 105.37 0.293 46.28 11.68 2.97 39.07 质膜
TaDGAT1-6 chr7D.467917764-467926136 470 54.07 9.25 43.56 106.43 0.301 47.45 12.13 3.83 36.60 质膜
TaDGAT2-1 chr1A.309910012-309913118 247 28.36 9.85 41.85 100.97 0.199 28.34 27.13 7.69 36.84 细胞质
TaDGAT2-2 chr6A.506235347-506239101 455 50.25 10.66 40.57 82.79 -0.208 29.01 18.02 5.27 47.69 叶绿体
TaDGAT2-3 chr6B.550077872-550080884 472 52.14 10.57 47.88 78.96 -0.251 28.60 15.25 8.05 48.09 质膜
TaDGAT2-4 chr6D.365278335-365281853 325 36.50 9.79 33.08 103.17 0.273 37.85 20.62 5.85 35.69 质膜
TaDGAT2-5 chr7A.14172212-14175945 334 37.25 9.08 43.90 90.78 0.275 34.14 19.76 6.29 39.82 质膜
TaDGAT2-6 chr7A.195308047-195310553 336 37.36 9.05 40.72 99.29 0.226 33.93 20.54 9.23 36.31 细胞质
TaDGAT2-7 chr7B.332923582-332926431 344 38.04 8.76 40.06 101.54 0.255 37.50 17.73 7.56 37.21 质膜
TaDGAT2-8 chr7D.14836474-14841174 324 36.23 9.51 46.31 89.66 0.241 37.96 19.14 7.10 35.80 质膜
TaDGAT2-9 chr7D.188821967-188824699 347 38.47 8.90 40.64 101.47 0.248 30.84 19.88 7.78 41.50 质膜
TaWSD-1 chr2A.24154221-24157435 218 25.13 6.30 48.21 91.19 -0.128 47.71 12.84 5.50 33.94 细胞质
TaWSD-2 chr2D.1912608-1922943 496 55.43 9.67 44.73 96.67 -0.027 40.73 16.13 2.42 40.73 叶绿体
TaWSD-3 chr3A.9843405-9846523 495 55.06 8.98 46.92 95.29 0.032 39.19 16.77 3.03 41.01 质膜
TaWSD-4 chr3A.11023281-11028199 501 56.02 9.04 52.97 94.31 0.001 37.92 15.97 2.59 43.51 质膜
TaWSD-5 chr3B.5230206-5234785 334 37.25 9.08 43.90 90.78 0.275 34.13 19.76 6.29 39.82 质膜
TaWSD-6 chr3B.6670118-6673010 499 55.56 8.98 45.90 93.55 0.003 38.28 17.03 2.81 41.88 叶绿体
TaWSD-7 chr3B.13744964-13749320 504 56.45 8.87 52.07 93.00 0.016 37.50 17.26 2.58 42.66 质膜
TaWSD-8 chr3B.481649743-481652877 509 56.58 8.76 40.81 98.45 0.019 41.45 16.50 4.13 37.92 质膜
TaWSD-9 chr3D.4179986-4182963 496 55.35 9.08 44.33 92.56 -0.011 38.91 16.13 3.02 41.94 叶绿体
TaWSD-10 chr3D.370123379-370126365 432 48.08 6.52 38.86 95.25 -0.007 44.21 15.51 3.94 36.34 细胞质
TaWSD-11 chr6B.550077872-550080884 500 55.57 9.10 47.36 93.40 0.041 39.40 19.80 2.80 38.00 质膜
玉米
Zea
mays
ZmDGAT1-1 chr6.108212462-108219350 197 23.65 9.32 37.25 101.37 0.471 60.41 11.68 3.55 24.37 质膜
ZmDGAT1-2 chr6.136606701-136613008 536 60.17 9.21 48.34 101.19 0.352 50.00 11.38 4.48 34.14 质膜
ZmDGAT2-1 chr4.12951363-12952979 140 15.71 6.80 49.60 106.50 0.500 31.43 25.00 7.14 36.43 叶绿体
ZmDGAT2-2 chr4.165057547-165060492 409 45.26 10.75 45.52 85.40 -0.072 30.56 15.65 6.60 47.19 质膜
ZmDGAT2-3 chr5.50715540-50717216 204 22.88 8.70 39.00 96.03 0.009 31.37 24.51 10.78 33.33 叶绿体
ZmDGAT2-4 chr9.47487176-47490826 332 37.16 9.60 32.44 97.80 0.247 37.35 19.88 6.33 36.45 质膜
ZmWSD-1 chr6.167699425-167706622 556 61.29 9.23 47.05 83.63 -0.170 39.57 15.29 2.70 42.45 质膜
高粱
Sorghum
bicolor
SbDGAT1-1 chr9.8916935-8923148 515 57.86 9.13 46.93 99.86 0.295 48.93 10.68 3.50 36.89 质膜
SbDGAT1-2 chr10.50099836-50118712 484 55.62 9.23 44.56 102.75 0.294 51.24 11.57 2.48 34.71 质膜
SbDGAT2-1 chr4.60698402-60701452 334 37.08 9.81 37.91 98.95 0.320 35.33 18.56 7.19 38.92 质膜
SbDGAT2-2 chr8.4821575-4825729 290 33.34 9.36 44.87 81.97 0.169 33.79 24.83 7.59 33.79 叶绿体
SbDGAT2-3 chr10.19611856-19615565 332 37.50 9.76 39.99 91.63 0.158 37.35 19.58 8.13 34.94 质膜
SbWSD-1 chr2.1839607-1843547 494 54.62 9.11 52.05 93.99 -0.052 37.65 17.41 3.85 41.09 质膜
SbWSD-2 chr3.63801546-63804967 372 41.50 9.00 40.16 95.94 0.048 41.40 17.20 3.49 37.90 内质网
SbWSD-3 chr6.9222487-9226442 468 51.05 7.20 37.29 97.14 0.060 34.19 17.31 2.78 45.73 细胞质
SbWSD-4 chr9.56810016-56817272 554 61.07 9.34 45.02 81.44 -0.175 39.89 15.34 3.25 41.52 质膜

Fig.1

Phylogenetic tree of DGAT protein"

Fig.2

Analysis of DGAT amino acid sequence a: DGAT sequence alignment, b: analysis of DGAT amino acid sites"

Fig.3

Genetic structure, protein sequence, gene sequence, domain of DGAT gene (a) DGAT gene structure and motif analysis, (b) motif analysis of DGAT3, (c) DGAT domain analysis, (d) 3D structure of DGAT"

Fig.4

ZmDGAT protein interaction network The light blue line represents data from the database, the purple line represents experimental proof, the yellow line represents text mining, and the black line represents co-expression"

Fig.5

DGAT promoter analysis A: ABA response element, B: anaerobic induction element, C: auxin response element, D: defense and stress response element, E: light response element, F: low temperature response element, G: jasmonic acid response element, H: meristem expression, I: circadian rhythm control element, J: gibberellin response element, K: endosperm specific expression element, L: seed specific control element, M: zein metabolism control element, N: salicylic acid response element, O: cell cycle control element"

Fig.6

Analysis of the expression pattern of DGAT gene famil Some genes were not matched to the data, and the gray color indicates that the genes are not expressed. (a): Heat map of TaDGATs plant built expression; (b): Heat map of SbDGATs expression in roots and stems under ABA, drought, weak alkaline stress; (c): Heat map of SiDGATs expression under light, ammonia, drought, nitrate, urea stress; (d): Heat map of TaDGATs expression under high temperature, drought, combined stress; (e): Heat and low temperature stress with different oxidative treatments OsDGATs expression heat map; (f): ZmDGATs gene expression heat map under drought and submergence stress (L1-maize variety B73, L2-maize variety B97, L3-maize tolerant variety Mo18w, L4-maize tolerant variety M162w)"

Fig.7

qRT-PCR expression analysis of ZmDGATs under abiotic stress"

[1] Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Current Opinion in Biotechnology, 2018, 49:191-198.
doi: S0958-1669(17)30085-X pmid: 28987914
[2] Du Z Y, Benning C. Triacylglycerol Accumulation in photosynthetic cells in plants and algae. Subcellular Biochemistry, 2016, 86:179-205.
[3] Bhatt-Wessel B, Jordan T W, Miller J H, et al. Role of DGAT enzymes in triacylglycerol metabolism. Archives of Biochemistry and Biophysics, 2018, 655:1-11.
doi: S0003-9861(18)30190-5 pmid: 30077544
[4] Chen G, Xu Y, Siloto R M P, et al. High-performance variants of plant diacylglycerol acyltransferase 1 generated by directed evolution provide insights into structure function. Plant Journal, 2017, 92(2):167-177.
doi: 10.1111/tpj.13652
[5] Liu D, Ji H, Yang Z. Functional characterization of three novel genes encoding diacylglycerol acyltransferase (DGAT) from oil- rich tubers of cyperus esculentus. Plant and Cell Physiology. 2020, 61(1):118-129.
doi: 10.1093/pcp/pcz184
[6] Zheng L, Shockey J, Guo F, et al. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. Journal of Plant Physiology, 2017, 219:62-70.
doi: S0176-1617(17)30242-0 pmid: 29031100
[7] Zhou X R, Shrestha P, Yin F, et al. AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. FEBS Letters, 2013, 587(15):2371-2376.
doi: 10.1016/j.febslet.2013.06.003
[8] Gao H, Gao Y, Zhang F, et al. Functional characterization of an novel acyl-CoA:diacylglycerol acyltransferase 3-3 (CsDGAT3-3) gene from camelina sativa. Plant Science, 2021, 303:110752.
doi: 10.1016/j.plantsci.2020.110752
[9] Aymé L, Arragain S, Canonge M, et al. Arabidopsis thaliana DGAT 3 is a [2Fe-2S] protein involved in TAG biosynthesis. Scientific Reports, 2018, 8(1):17254.
doi: 10.1038/s41598-018-35545-7
[10] 陶芬芳. 甘蓝型油菜二酰甘油酰基转移酶(BnDGAT3)基因克隆与表达研究. 长沙:湖南农业大学, 2017.
[11] Rosli R, Chan P L, Chan K L, et al. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1,DGAT2,DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Science, 2018, 275:84-96.
doi: 10.1016/j.plantsci.2018.07.011
[12] Yan B, Xu X, Gu Y, et al. Genome-wide characterization and expression profiling of diacylglycerol acyltransferase genes from maize. Genome, 2018, 61(10):735-743.
doi: 10.1139/gen-2018-0029 pmid: 30092654
[13] 闫博巍, 许晓萱, 谷英楠, 等. 玉米Ⅰ型二酰基转移酶基因(DGAT1)的生物信息学分析及其在非生物胁迫下的表达研究. 玉米科学, 2018, 26(1):20-28.
[14] Lu C, Hills M J. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid,sugars,and osmotic stress during germination and seedling development. Plant Physiology, 2002, 129(3):1352-1358.
doi: 10.1104/pp.006122
[15] Siloto R M, Truksa M, Brownfield D, et al. Directed evolution of acyl-CoA:diacylglycerol acyltransferase:development and characterization of Brassica napus DGAT1 mutagenized libraries. Plant Physiology and Biochemistry, 2009, 47(6):456-461.
doi: 10.1016/j.plaphy.2008.12.019
[16] Ortiz R, Geleta M, Gustafsson C, et al. Oil crops for the future. Current Opinion in Plant Biology, 2020, 56:181-189.
doi: S1369-5266(19)30118-9 pmid: 31982290
[17] Singh Y, Sharma A, Singla A. Non-edible vegetable oil-based feedstocks capable of bio-lubricant production for automotive sector applications-a review. Environmental Science and Pollution Research, 2019, 26(15):14867-14882.
doi: 10.1007/s11356-019-05000-9
[18] van Dijk E L, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology. Trends in Genetics, 2018, 34(9):666-681.
doi: S0168-9525(18)30096-9 pmid: 29941292
[19] 郑玲, 单雷, 李新国, 等. 花生DGAT基因家族的生物信息学分析. 山东农业科学, 2018, 50(6):10-18.
[20] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[21] Liu Q, Siloto R M, Lehner R, et al. Acyl-CoA:diacylglycerol acyltransferase:molecular biology,biochemistry and biotechnology. Progress in Lipid Research, 2012, 51(4):350-377.
doi: 10.1016/j.plipres.2012.06.001
[22] Cao H. Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms. BMC Research Notes, 2011, 4:249.
doi: 10.1186/1756-0500-4-249 pmid: 21777418
[23] Qiao X, Li Q, Yin H, et al. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biology, 2019, 20(1):38.
doi: 10.1186/s13059-019-1650-2 pmid: 30791939
[24] Xu C, Shanklin J. Triacylglycerol metabolism,function,and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 2016, 67:179-206.
doi: 10.1146/annurev-arplant-043015-111641
[1] Yang Xiaolin, Duan Ying, Cai Suyun, He Runli, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Lihua. Molecular Cloning and Bioinformatics Analyzing of Laccase in Fagopyrum tataricum [J]. Crops, 2022, 38(3): 73-79.
[2] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[3] Wang Zhilong, Xue Yinghong, Hao Yueru, Liu Baoling, Yuan Lixia, Xue Jin'ai, Li Runzhi. Identification and Expression Analysis of Oil-Related Transcription actor CsLEC2 Gene Family in Camelina sativa (L.) Crantz [J]. Crops, 2020, 36(5): 23-32.
[4] Xu Yuanyuan, Zhao Peng, Hong Quanchun, Zhu Xiaoqin, Pei Dongli. Isolation and Expression Analysis of Transcription Factor Gene TaMYB70 in Wheat [J]. Crops, 2020, 36(4): 84-90.
[5] Song Jian,Cao Xiaoning,Wang Haigang,Chen Ling,Wang Junjie,Liu Sichen,Qiao Zhijun. Identification and Expression Analysis of ASR Family Genes in Setaria italica [J]. Crops, 2019, 35(6): 33-42.
[6] Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie. Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress [J]. Crops, 2019, 35(4): 183-190.
[7] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[8] Yu Li,Wenyin Zheng,Chun Feng,Rongfu Wang,Juan Li. Analysis of FeSOD Gene Expression in Normal Wheat Yannong 19 Seedlings under Abiotic Stress [J]. Crops, 2016, 32(4): 75-79.
[9] Hongmei Yuan,Wendong Guo,Lijuan Zhao,Ying Yu,Jianzhong Wu,Lili Cheng,Dongsheng Zhao,Qinghua Kang,Wengong Huang,Yubo Yao,Xixia Song,Weidong Jiang,Yan Liu,Tingfen Ma,Guangwen Wu,Fengzhi Guan. Cloning and Expression Analysis of the Glycosyltransferase Gene LuUGT72E1 in Flax [J]. Crops, 2016, 32(4): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!