Crops ›› 2023, Vol. 39 ›› Issue (4): 52-59.doi: 10.16035/j.issn.1001-7283.2023.04.008

Previous Articles     Next Articles

Comprehensive Evaluation of Heat Resistance of Sesame Seedlings Based on Principal Component Analysis and Membership Function Method

Su Xiaoyu1,2,3(), Gao Tongmei1,2,3, Zhang Pengyu1,2,3, Li Feng1,2,3, Wu Yin1,2,3, Wang Dongyong1,2,3, Tian Yuan1,2,3, Wei Shuangling1,2,3()   

  1. 1Sesame Research Center, Henan Academy of Agricultural Sciences,Zhengzhou 450002, Henan, China
    2The Shennong Seed Industry Laboratory, Zhengzhou 450002, Henan, China
    3HenanKeyLaboratoryofGenomicsofCharacteristicOilCrops, Zhengzhou 450002, Henan, China
  • Received:2022-03-29 Revised:2022-07-15 Online:2023-08-15 Published:2023-08-15

Abstract:

To comprehensively evaluate the heat tolerance of sesame seedling, 14 indexes of 20 sesame varieties were analyzed by principal component analysis and membership function method. The results showed that there were different degrees of variation in 14 heat tolerance related indexes, and the coefficients of variation ranged from 3.53% to 18.26%. Three principal components were extracted by principal component analysis, representing 83.54% of the total information. The comprehensive values of heat tolerance of different sesame varieties weregraded by membership function method and cluster analysis,and sesame varieties were divided into six grades, including two heat-tolerant varieties and three high-sensitive varieties. A mathematical model of sesame seedling heat tolerance evaluation was established by stepwise regression method. Nine key indexesselected from 14 indexes could be used as important indexes for screening and evaluation of heat tolerance of sesame. This conclusion was helpful to provide theoretical and technical basis for breeding heat-tolerant sesame varieties and related high-yield cultivation.

Key words: Sesame (Sesamum indicum L.), Heat resistance, Principal component analysis, Membership function, Comprehensive evaluation

Table 1

Informations of tested sesame germplasm resources"

编号Number 品种Variety 来源Source 粒色Grain colour
SP002 翼城芝麻 山西
SP014 河涧黄芝麻 河南
SP018 河北八杈 河北
SP019 山东白芝麻 山东
SP028 尖嘴芝麻 海南
SP039 胡芝麻 安徽
SP059 黄芝麻 辽宁
SP067 白芝麻 江西
SP078 晚芝麻 湖北
SP102 中芝20号 河南
SP112 黄芝麻 海南
SP117 豫芝DW607 河南
SP133 一条鞭 河南
SP146 三铺村黑芝麻 江苏
SP157 山东黑芝麻 山东
SP162 江西黑芝麻 江西
SP170 郑太芝3号 河南
SP174 临漳芝麻 河北
SP184 山东黑芝麻 山东
SP197 扶绥白芝麻 广西

Table 2

Heat-tolerance coefficien of each single indext and survivaldaysof sesame germplasms"

指标
Index
极小值
Minimum
极大值
Maximum
均值
Mean
变异系数
Coefficient of variation(%)
X1 8.06 15.93 12.86±2.00 15.59
X2 0.84 0.98 0.92±0.03 3.53
X3 0.41 0.74 0.60±0.08 13.43
X4 1.41 2.31 1.85±0.26 14.54
X5 0.60 0.89 0.74±0.07 8.82
X6 0.39 0.79 0.61±0.11 18.26
X7 1.64 2.31 1.86±0.18 9.62
X8 0.56 0.86 0.72±0.07 10.17
X9 0.73 1.36 1.12±0.20 17.85
X10 2.63 4.85 3.72±0.61 16.40
X11 2.19 3.11 2.50±0.22 8.89
X12 1.27 1.93 1.68±0.15 8.91
X13 1.60 2.64 2.19±0.23 10.54
X14 1.46 2.60 2.05±0.35 17.32

Table 3

Correlation analysis of the heat-tolerance coefficients and survival days in different sesame varieties"

指标Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
X1 1.00
X2 0.40 1.00
X3 0.83** 0.41 1.00
X4 -0.86** -0.45 -0.86** 1.00
X5 0.77** 0.34 0.71** -0.73** 1.00
X6 0.84** 0.22 0.78** -0.79** 0.76** 1.00
X7 -0.78** -0.32 -0.71** 0.77** -0.68* -0.77** 1.00
X8 0.82** 0.32 0.76** -0.80** 0.72** 0.78** -0.73** 1.00
X9 0.92** 0.38 0.79** -0.78** 0.64* 0.79** -0.70** 0.69* 1.00
X10 0.73** 0.39 0.73** -0.81** 0.68* 0.64* -0.55* 0.73** 0.63* 1.00
X11 0.79** 0.36 0.78** -0.85** 0.75** 0.73** -0.62* 0.76** 0.60* 0.75** 1.00
X12 0.76** 0.22 0.56* -0.59* 0.73** 0.62* -0.72** 0.65* 0.67* 0.55* 0.62* 1.00
X13 -0.73** -0.31 -0.71** 0.78** -0.71** -0.73** 0.71** -0.76** -0.59* -0.69* -0.83** -0.71** 1.00
X14 -0.88** -0.45 -0.87** 0.94** -0.74** -0.82** 0.73** -0.85** -0.81** -0.79** -0.86** -0.58* 0.80** 1.00

Table 4

Coefficients and contribution of comprehensive indexes of principal components"

指标Index CI(1) CI(2) CI(3)
X1 0.30 -0.03 0.21
X2 0.14 0.84 0.34
X3 0.28 0.11 -0.07
X4 -0.29 -0.14 0.15
X5 0.27 -0.12 0.04
X6 0.28 -0.21 0.03
X7 -0.26 0.18 -0.33
X8 0.28 -0.07 -0.13
X9 0.27 0.00 0.41
X10 0.26 0.16 -0.36
X11 0.28 0.04 -0.39
X12 0.24 -0.34 0.38
X13 -0.27 0.11 0.25
X14 -0.30 -0.13 0.16
特征值Eigenvalue 10.09 0.94 0.66
贡献率Contribution rate(%) 72.09 6.74 4.71
累计贡献率
Accumulative contribution rate (%)
72.09 78.83 83.54

Table 5

Values of different sesame varieties’ comprehensive index,μ(x), index weight (IW), and comprehensive index score value(C)"

品种
Variety
得分Score 隶属函数值Membership function C
CI(1) CI(2) CI(3) μ(1) μ(2) μ(3)
SP002 3.61 0.95 0.52 0.82 0.73 0.66 0.80
SP014 -1.67 -1.54 0.58 0.39 0.02 0.68 0.38
SP018 -1.24 0.83 1.57 0.43 0.70 1.00 0.48
SP019 -2.25 -1.06 -0.32 0.34 0.15 0.38 0.33
SP028 3.14 1.18 -0.13 0.78 0.80 0.45 0.76
SP039 -0.94 -1.59 0.33 0.45 0.00 0.59 0.42
SP059 -4.64 -0.31 -1.00 0.15 0.37 0.16 0.17
SP067 0.48 0.08 0.37 0.56 0.48 0.61 0.56
SP078 -5.40 0.09 -1.49 0.09 0.48 0.00 0.12
SP102 0.42 1.54 1.17 0.56 0.90 0.87 0.60
SP112 -0.86 -0.55 -0.62 0.46 0.30 0.29 0.43
SP117 5.88 -0.12 -0.71 1.00 0.42 0.26 0.91
SP133 2.79 -0.17 -0.69 0.75 0.41 0.26 0.70
SP146 0.85 -1.16 0.56 0.59 0.12 0.67 0.56
SP157 2.28 0.32 -0.15 0.71 0.55 0.44 0.68
SP162 1.75 0.63 0.33 0.67 0.64 0.60 0.66
SP174 -0.75 -0.82 0.94 0.47 0.22 0.80 0.46
SP184 -6.52 1.88 -0.76 0.00 1.00 0.24 0.09
SP197 -1.96 -0.36 -0.09 0.37 0.35 0.46 0.37
SP170 5.03 0.17 -0.51 0.93 0.51 0.32 0.86
权重Weight 0.86 0.08 0.06

Fig.1

Dendrogram of thermotolerance for 20 sesame varieties"

Table 6

Analysis of grey correlation degree between each single index and C-value of different sesame varieties"

关联排序
Relational order
指标
Index
关联系数
Correlation coefficient
1 X1 0.69
2 X3 0.64
3 X6 0.62
4 X5 0.59
5 X8 0.58
6 X9 0.57
7 X11 0.56
8 X10 0.53
9 X2 0.51
10 X12 0.50
11 X13 0.36
12 X7 0.29
13 X4 0.26
14 X14 0.26
[1] Li X, Wei J P, Hammed G J. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing theanine biosynthesis in Camellia sinensis L.. Frontiers in Plant Science, 2018, 9:1016-1024.
doi: 10.3389/fpls.2018.01016
[2] Li B, Gao K, Ren H, et al. Molecular mechanisms governing plant responses to high temperatures. Journal of Integrative Plant Biology, 2018, 60(9):757-779.
doi: 10.1111/jipb.12701
[3] Bedigian D. Characterization of sesame (Sesamum indicum L.) germplasm: a critique. Genetic Resources and Crop Evolution, 2010, 57(5):641-647.
doi: 10.1007/s10722-010-9552-x
[4] 国家统计局农村社会经济调查司. 中国农业统计年鉴. 北京: 中国统计出版社, 2020.
[5] Baath G S, Kakani V G, Northup B K, et al. Quantifying and modeling the influence of temperature on growth and reproductive development of sesame. Journal of Plant Growth Regulation, 2021, 41:143-152.
doi: 10.1007/s00344-020-10278-y
[6] 赵龙飞, 李潮海, 刘天学. 作物耐热性研究进展. 中国农学通报, 2012, 28(9):11-15.
[7] 乔江方, 牛军, 刘京宝, 等. 花期高温对不同夏玉米品种产量及品质的影响. 河南农业科学, 2019, 48(7):11-18.
[8] 靳路真, 王洋, 张伟, 等. 大豆品种(系)耐热性鉴定及分级评鉴. 中国油料作物学报, 2016, 38(1):77-87.
[9] 赵鹏, 王晓明, 刘曼双, 等. 小麦种质资源耐热性评估研究进展. 麦类作物学报, 2021, 41(5):569-576.
[10] 蓝令, 吴泽, 张德花, 等. 切花百合耐热性评价及越夏栽培技术研究. 南京农业大学学报, 2021, 44(6):1063-1073.
[11] 陈雷, 王强, 张晓丽, 等. 不同水稻基因型花期耐热性鉴定与评价. 南方农业学报, 2021, 52(10):2641-2649.
[12] 余长春, 罗本钒, 傅强, 等. 不结球白菜遗传多样性分析以及耐热性鉴定. 华中农业大学学报, 2021, 40(6):119-125.
[13] 王小波, 关攀锋, 辛明明, 等. 小麦种质资源耐热性评价. 中国农业科学, 2019, 52(23):4191-4200.
doi: 10.3864/j.issn.0578-1752.2019.23.001
[14] 侯静静, 李葆春, 汪军成, 等. NaCl胁迫下盐生草在不同重金属处理下的萌发特性分析. 草地学报, 2019, 27(1):112-122.
doi: 10.11733/j.issn.1007-0435.2019.01.015
[15] Giannopolites C, Ries S K. Superoxide dismutase occurrence in higher plants. Plant Physiology, 1977, 59:309-314.
doi: 10.1104/pp.59.2.309
[16] Havir E A, Mchale N A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 1987, 84(2):450-455.
doi: 10.1104/pp.84.2.450 pmid: 16665461
[17] Kochba J, Lavee S, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic 'Shamouti' orange ovular callus lines. Plant and Cell Physiology, 1977, 18(2):463-467.
doi: 10.1093/oxfordjournals.pcp.a075455
[18] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2015:274-287.
[19] Gupta S K, Kumar R, Sarkar B, et al. Priming alleviates high temperature induced oxidative DNA damage and repair using apurinic/apyrimidinic endonuclease (ape1l) homologue in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 2020, 156:304-313.
doi: S0981-9428(20)30465-4 pmid: 32992277
[20] Loka D A,terhuis D M, Baxevanos D, et al. Single and combined effects of heat and water stress and recovery on cotton (Gossypium hirsutum L.) leaf physiology and sucrose metabolism. Plant Physiology and Biochemistry, 2020, 148:166-179.
doi: 10.1016/j.plaphy.2020.01.015
[21] Hasanuzzaman M, Nahar K, Alam M, et al. Physiological,biochemical,and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14(5):9643-9684.
doi: 10.3390/ijms14059643 pmid: 23644891
[22] 张学鹏, 李腾, 王彪, 等. 玉米叶片“源”的高温胁迫阈值研究. 作物杂志, 2021(2):62-70.
[23] Muhammad N, Jiajia L, Minghua W, et al. Unraveling field crops sensitivity to heat stress:mechanisms,approaches,and future prospects. Agronomy, 2018, 8(7):128-164.
doi: 10.3390/agronomy8070128
[24] Singh I, Debnath S, Gautam A, et al. Characterization of contrasting genotypes reveals general physiological and molecular mechanisms of heat-stress adaptation in maize (Zea mays L.). Physiology and Molecular Biology of Plants, 2020, 26(5):921-929.
doi: 10.1007/s12298-020-00801-6
[25] Kimm H, Guan K, Burroughs C H, et al. Quantifying high-temperature stress on soybean canopy photosynthesis:the unique role of sun-induced chlorophyll fluorescence. Global Change Biology, 2021, 27(11):2403-2415.
doi: 10.1111/gcb.v27.11
[26] 李璇, 岳红, 王升, 等. 影响植物抗氧化酶活性的因素及其研究热点和现状. 中国中药杂志, 2013, 38(7):973-978.
[27] Inghelandt D V, Frey F P, Ries D, et al. QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Scientific Reports, 2019, 9(1):1-16.
doi: 10.1038/s41598-018-37186-2
[28] 陈立松, 刘星辉. 植物抗热性鉴定指标的种类. 干旱地区农业研究, 1997, 15(4):74-79.
[29] 庞强强, 周曼, 孙晓东, 等. 菜心耐热性评价及酶促抗氧化系统对高温胁迫的响应. 浙江农业学报, 2020, 32(1):72-79.
doi: 10.3969/j.issn.1004-1524.2020.01.09
[30] 李敏, 苏慧, 李阳阳, 等. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选. 中国农业科学, 2021, 54(16):3381-3392.
doi: 10.3864/j.issn.0578-1752.2021.16.002
[1] Xu Xuewen, Wang Xingpeng, Wang Hongbo, Li Guohui, Tang Maosong, Cao Zhenxi. Effects of Salicylic Acid Application on the Growth and Physiological Characteristics of Cotton Seedlings under Salt Stress [J]. Crops, 2023, 39(3): 188-194.
[2] Guo Hongxia, Wang Chuangyun, Deng Yan, Zhao Li, Zhang Liguang, Guo Hongxia, Qin Lixia, Gao Fei, Xi Ruizhen. Response of Quinoa to Low Nitrogen Stress [J]. Crops, 2023, 39(3): 221-229.
[3] Wang Rongsheng, Mu Fengchen, Li Kun, Zhang Wei, Liu Hui, Ding Guohua, Yang Guang, Wang Nanbo, Zhang Guomin, Liu Yuming, Tao Yongqing. Comprehensive Analysis of Milling Quality and Eating Quality of Japonica Rice in Cold Region [J]. Crops, 2023, 39(2): 115-120.
[4] Guo Juxian, Huang Jiaxin, Li Guihua, Fu Mei, Luo Wenlong, Wang Jun, Lu Meilian. Volatiles Metabolites Analysis and Evaluation on Quality Traits of Different Tora Varieties [J]. Crops, 2022, 38(6): 167-173.
[5] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[6] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[7] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
[8] Zhao Kang, Yang Tao, Wang Honggang, Li Shengmei, Pang Bo, Ma Shangjie, Gao Wenwei. Evaluation on Salt Tolerance of 42 Sea-Island Cotton (Gossypium barbadense) Varieties in Xinjiang during Germination Period [J]. Crops, 2022, 38(5): 27-33.
[9] Hou Jingjing, Jin Fang, Zhao Li, Wang Bin. Comprehensive Evaluation of Agronomic and Quality Traits of 16 New Oil Flax Lines [J]. Crops, 2022, 38(5): 42-48.
[10] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
[11] Zhang Chunyan, Zhuang Kezhang, Wu Ronghua, Li Jing, Li Xinxin, Wang Heng, Dong Xichen, Xu Geng, Wu Benhua. Comprehensive Evaluation of 11 Feed Oat Varieties in Southern Shandong by DTOPSIS Method Based on Entropy Weighting [J]. Crops, 2022, 38(4): 62-68.
[12] Song Quanhao, Jin Yan, Song Jiajing, Chen Jie, Zhao Lishang, Bai Dong, Chen Liang, Zhu Tongquan. Comprehensive Evaluation of 35 Synthetic Hexaploid Wheat Cultivars [J]. Crops, 2022, 38(4): 69-76.
[13] Xiao Mingkun, Liu Guanghua, Song Jiming, Liu Qian, Duan Chunfang, Jiang Tailing, Zhang Linhui, Yan Wei, Shen Shaobin, Zhou Yingchun, Xiong Xiankun, Luo Xin, Bai Lina, Li Yuexian. Analysis of Agronomic Characteristics of Different Cassava Varieties (Lines) and Screening of High-Yielding Varieties (Lines) [J]. Crops, 2022, 38(4): 77-82.
[14] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[15] Wu Pengbo, Li Lijun, Zhang Yanli. Comprehensive Evaluation of Saline-Alkali Tolerance and Comparison of Rhizosphere Soil Organic Acid Content at Rapeseed Seedling Stage [J]. Crops, 2022, 38(1): 110-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!